Step |
Hyp |
Ref |
Expression |
1 |
|
odcl.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
odcl.2 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
3 |
|
odid.3 |
⊢ · = ( .g ‘ 𝐺 ) |
4 |
|
odid.4 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
5 |
|
nn0z |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ ) |
6 |
1 2 3 4
|
oddvds |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℤ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) |
7 |
5 6
|
syl3an3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) |
8 |
7
|
3expa |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) |
9 |
8
|
ralrimiva |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ∀ 𝑦 ∈ ℕ0 ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) |
10 |
|
breq1 |
⊢ ( 𝑁 = ( 𝑂 ‘ 𝐴 ) → ( 𝑁 ∥ 𝑦 ↔ ( 𝑂 ‘ 𝐴 ) ∥ 𝑦 ) ) |
11 |
10
|
bibi1d |
⊢ ( 𝑁 = ( 𝑂 ‘ 𝐴 ) → ( ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ↔ ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) ) |
12 |
11
|
ralbidv |
⊢ ( 𝑁 = ( 𝑂 ‘ 𝐴 ) → ( ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ↔ ∀ 𝑦 ∈ ℕ0 ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) ) |
13 |
9 12
|
syl5ibrcom |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 = ( 𝑂 ‘ 𝐴 ) → ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) ) |
14 |
13
|
3adant3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 = ( 𝑂 ‘ 𝐴 ) → ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) ) |
15 |
|
simpl3 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → 𝑁 ∈ ℕ0 ) |
16 |
|
simpl2 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → 𝐴 ∈ 𝑋 ) |
17 |
1 2
|
odcl |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
18 |
16 17
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
19 |
1 2 3 4
|
odid |
⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) |
20 |
16 19
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) |
21 |
17
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
22 |
|
breq2 |
⊢ ( 𝑦 = ( 𝑂 ‘ 𝐴 ) → ( 𝑁 ∥ 𝑦 ↔ 𝑁 ∥ ( 𝑂 ‘ 𝐴 ) ) ) |
23 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑂 ‘ 𝐴 ) → ( 𝑦 · 𝐴 ) = ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) ) |
24 |
23
|
eqeq1d |
⊢ ( 𝑦 = ( 𝑂 ‘ 𝐴 ) → ( ( 𝑦 · 𝐴 ) = 0 ↔ ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) ) |
25 |
22 24
|
bibi12d |
⊢ ( 𝑦 = ( 𝑂 ‘ 𝐴 ) → ( ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ↔ ( 𝑁 ∥ ( 𝑂 ‘ 𝐴 ) ↔ ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) ) ) |
26 |
25
|
rspcva |
⊢ ( ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → ( 𝑁 ∥ ( 𝑂 ‘ 𝐴 ) ↔ ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) ) |
27 |
21 26
|
sylan |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → ( 𝑁 ∥ ( 𝑂 ‘ 𝐴 ) ↔ ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) ) |
28 |
20 27
|
mpbird |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → 𝑁 ∥ ( 𝑂 ‘ 𝐴 ) ) |
29 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
30 |
|
iddvds |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∥ 𝑁 ) |
31 |
15 29 30
|
3syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → 𝑁 ∥ 𝑁 ) |
32 |
|
breq2 |
⊢ ( 𝑦 = 𝑁 → ( 𝑁 ∥ 𝑦 ↔ 𝑁 ∥ 𝑁 ) ) |
33 |
|
oveq1 |
⊢ ( 𝑦 = 𝑁 → ( 𝑦 · 𝐴 ) = ( 𝑁 · 𝐴 ) ) |
34 |
33
|
eqeq1d |
⊢ ( 𝑦 = 𝑁 → ( ( 𝑦 · 𝐴 ) = 0 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
35 |
32 34
|
bibi12d |
⊢ ( 𝑦 = 𝑁 → ( ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ↔ ( 𝑁 ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) ) |
36 |
35
|
rspcva |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → ( 𝑁 ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
37 |
36
|
3ad2antl3 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → ( 𝑁 ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
38 |
31 37
|
mpbid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → ( 𝑁 · 𝐴 ) = 0 ) |
39 |
1 2 3 4
|
oddvds |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
40 |
29 39
|
syl3an3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
41 |
40
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
42 |
38 41
|
mpbird |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ) |
43 |
|
dvdseq |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) ∧ ( 𝑁 ∥ ( 𝑂 ‘ 𝐴 ) ∧ ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ) ) → 𝑁 = ( 𝑂 ‘ 𝐴 ) ) |
44 |
15 18 28 42 43
|
syl22anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → 𝑁 = ( 𝑂 ‘ 𝐴 ) ) |
45 |
44
|
ex |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) → 𝑁 = ( 𝑂 ‘ 𝐴 ) ) ) |
46 |
14 45
|
impbid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 = ( 𝑂 ‘ 𝐴 ) ↔ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) ) |