Metamath Proof Explorer


Theorem odeq1

Description: The group identity is the unique element of a group with order one. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Mario Carneiro, 23-Sep-2015)

Ref Expression
Hypotheses od1.1 𝑂 = ( od ‘ 𝐺 )
od1.2 0 = ( 0g𝐺 )
odeq1.3 𝑋 = ( Base ‘ 𝐺 )
Assertion odeq1 ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( ( 𝑂𝐴 ) = 1 ↔ 𝐴 = 0 ) )

Proof

Step Hyp Ref Expression
1 od1.1 𝑂 = ( od ‘ 𝐺 )
2 od1.2 0 = ( 0g𝐺 )
3 odeq1.3 𝑋 = ( Base ‘ 𝐺 )
4 oveq1 ( ( 𝑂𝐴 ) = 1 → ( ( 𝑂𝐴 ) ( .g𝐺 ) 𝐴 ) = ( 1 ( .g𝐺 ) 𝐴 ) )
5 4 eqcomd ( ( 𝑂𝐴 ) = 1 → ( 1 ( .g𝐺 ) 𝐴 ) = ( ( 𝑂𝐴 ) ( .g𝐺 ) 𝐴 ) )
6 eqid ( .g𝐺 ) = ( .g𝐺 )
7 3 6 mulg1 ( 𝐴𝑋 → ( 1 ( .g𝐺 ) 𝐴 ) = 𝐴 )
8 3 1 6 2 odid ( 𝐴𝑋 → ( ( 𝑂𝐴 ) ( .g𝐺 ) 𝐴 ) = 0 )
9 7 8 eqeq12d ( 𝐴𝑋 → ( ( 1 ( .g𝐺 ) 𝐴 ) = ( ( 𝑂𝐴 ) ( .g𝐺 ) 𝐴 ) ↔ 𝐴 = 0 ) )
10 9 adantl ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( ( 1 ( .g𝐺 ) 𝐴 ) = ( ( 𝑂𝐴 ) ( .g𝐺 ) 𝐴 ) ↔ 𝐴 = 0 ) )
11 5 10 syl5ib ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( ( 𝑂𝐴 ) = 1 → 𝐴 = 0 ) )
12 1 2 od1 ( 𝐺 ∈ Grp → ( 𝑂0 ) = 1 )
13 12 adantr ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( 𝑂0 ) = 1 )
14 fveqeq2 ( 𝐴 = 0 → ( ( 𝑂𝐴 ) = 1 ↔ ( 𝑂0 ) = 1 ) )
15 13 14 syl5ibrcom ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( 𝐴 = 0 → ( 𝑂𝐴 ) = 1 ) )
16 11 15 impbid ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( ( 𝑂𝐴 ) = 1 ↔ 𝐴 = 0 ) )