| Step | Hyp | Ref | Expression | 
						
							| 1 |  | od1.1 | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 2 |  | od1.2 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | odeq1.3 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 4 |  | oveq1 | ⊢ ( ( 𝑂 ‘ 𝐴 )  =  1  →  ( ( 𝑂 ‘ 𝐴 ) ( .g ‘ 𝐺 ) 𝐴 )  =  ( 1 ( .g ‘ 𝐺 ) 𝐴 ) ) | 
						
							| 5 | 4 | eqcomd | ⊢ ( ( 𝑂 ‘ 𝐴 )  =  1  →  ( 1 ( .g ‘ 𝐺 ) 𝐴 )  =  ( ( 𝑂 ‘ 𝐴 ) ( .g ‘ 𝐺 ) 𝐴 ) ) | 
						
							| 6 |  | eqid | ⊢ ( .g ‘ 𝐺 )  =  ( .g ‘ 𝐺 ) | 
						
							| 7 | 3 6 | mulg1 | ⊢ ( 𝐴  ∈  𝑋  →  ( 1 ( .g ‘ 𝐺 ) 𝐴 )  =  𝐴 ) | 
						
							| 8 | 3 1 6 2 | odid | ⊢ ( 𝐴  ∈  𝑋  →  ( ( 𝑂 ‘ 𝐴 ) ( .g ‘ 𝐺 ) 𝐴 )  =   0  ) | 
						
							| 9 | 7 8 | eqeq12d | ⊢ ( 𝐴  ∈  𝑋  →  ( ( 1 ( .g ‘ 𝐺 ) 𝐴 )  =  ( ( 𝑂 ‘ 𝐴 ) ( .g ‘ 𝐺 ) 𝐴 )  ↔  𝐴  =   0  ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( ( 1 ( .g ‘ 𝐺 ) 𝐴 )  =  ( ( 𝑂 ‘ 𝐴 ) ( .g ‘ 𝐺 ) 𝐴 )  ↔  𝐴  =   0  ) ) | 
						
							| 11 | 5 10 | imbitrid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑂 ‘ 𝐴 )  =  1  →  𝐴  =   0  ) ) | 
						
							| 12 | 1 2 | od1 | ⊢ ( 𝐺  ∈  Grp  →  ( 𝑂 ‘  0  )  =  1 ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑂 ‘  0  )  =  1 ) | 
						
							| 14 |  | fveqeq2 | ⊢ ( 𝐴  =   0   →  ( ( 𝑂 ‘ 𝐴 )  =  1  ↔  ( 𝑂 ‘  0  )  =  1 ) ) | 
						
							| 15 | 13 14 | syl5ibrcom | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴  =   0   →  ( 𝑂 ‘ 𝐴 )  =  1 ) ) | 
						
							| 16 | 11 15 | impbid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑂 ‘ 𝐴 )  =  1  ↔  𝐴  =   0  ) ) |