Step |
Hyp |
Ref |
Expression |
1 |
|
od1.1 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
2 |
|
od1.2 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
odeq1.3 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
4 |
|
oveq1 |
⊢ ( ( 𝑂 ‘ 𝐴 ) = 1 → ( ( 𝑂 ‘ 𝐴 ) ( .g ‘ 𝐺 ) 𝐴 ) = ( 1 ( .g ‘ 𝐺 ) 𝐴 ) ) |
5 |
4
|
eqcomd |
⊢ ( ( 𝑂 ‘ 𝐴 ) = 1 → ( 1 ( .g ‘ 𝐺 ) 𝐴 ) = ( ( 𝑂 ‘ 𝐴 ) ( .g ‘ 𝐺 ) 𝐴 ) ) |
6 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
7 |
3 6
|
mulg1 |
⊢ ( 𝐴 ∈ 𝑋 → ( 1 ( .g ‘ 𝐺 ) 𝐴 ) = 𝐴 ) |
8 |
3 1 6 2
|
odid |
⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑂 ‘ 𝐴 ) ( .g ‘ 𝐺 ) 𝐴 ) = 0 ) |
9 |
7 8
|
eqeq12d |
⊢ ( 𝐴 ∈ 𝑋 → ( ( 1 ( .g ‘ 𝐺 ) 𝐴 ) = ( ( 𝑂 ‘ 𝐴 ) ( .g ‘ 𝐺 ) 𝐴 ) ↔ 𝐴 = 0 ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 1 ( .g ‘ 𝐺 ) 𝐴 ) = ( ( 𝑂 ‘ 𝐴 ) ( .g ‘ 𝐺 ) 𝐴 ) ↔ 𝐴 = 0 ) ) |
11 |
5 10
|
syl5ib |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) = 1 → 𝐴 = 0 ) ) |
12 |
1 2
|
od1 |
⊢ ( 𝐺 ∈ Grp → ( 𝑂 ‘ 0 ) = 1 ) |
13 |
12
|
adantr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 0 ) = 1 ) |
14 |
|
fveqeq2 |
⊢ ( 𝐴 = 0 → ( ( 𝑂 ‘ 𝐴 ) = 1 ↔ ( 𝑂 ‘ 0 ) = 1 ) ) |
15 |
13 14
|
syl5ibrcom |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 = 0 → ( 𝑂 ‘ 𝐴 ) = 1 ) ) |
16 |
11 15
|
impbid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) = 1 ↔ 𝐴 = 0 ) ) |