| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odcl.1 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | odcl.2 | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 3 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 4 |  | ltso | ⊢  <   Or  ℝ | 
						
							| 5 | 4 | infex | ⊢ inf ( 𝑤 ,  ℝ ,   <  )  ∈  V | 
						
							| 6 | 3 5 | ifex | ⊢ if ( 𝑤  =  ∅ ,  0 ,  inf ( 𝑤 ,  ℝ ,   <  ) )  ∈  V | 
						
							| 7 | 6 | csbex | ⊢ ⦋ { 𝑧  ∈  ℕ  ∣  ( 𝑧 ( .g ‘ 𝐺 ) 𝑦 )  =  ( 0g ‘ 𝐺 ) }  /  𝑤 ⦌ if ( 𝑤  =  ∅ ,  0 ,  inf ( 𝑤 ,  ℝ ,   <  ) )  ∈  V | 
						
							| 8 |  | eqid | ⊢ ( .g ‘ 𝐺 )  =  ( .g ‘ 𝐺 ) | 
						
							| 9 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 10 | 1 8 9 2 | odfval | ⊢ 𝑂  =  ( 𝑦  ∈  𝑋  ↦  ⦋ { 𝑧  ∈  ℕ  ∣  ( 𝑧 ( .g ‘ 𝐺 ) 𝑦 )  =  ( 0g ‘ 𝐺 ) }  /  𝑤 ⦌ if ( 𝑤  =  ∅ ,  0 ,  inf ( 𝑤 ,  ℝ ,   <  ) ) ) | 
						
							| 11 | 7 10 | fnmpti | ⊢ 𝑂  Fn  𝑋 | 
						
							| 12 | 1 2 | odcl | ⊢ ( 𝑥  ∈  𝑋  →  ( 𝑂 ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 13 | 12 | rgen | ⊢ ∀ 𝑥  ∈  𝑋 ( 𝑂 ‘ 𝑥 )  ∈  ℕ0 | 
						
							| 14 |  | ffnfv | ⊢ ( 𝑂 : 𝑋 ⟶ ℕ0  ↔  ( 𝑂  Fn  𝑋  ∧  ∀ 𝑥  ∈  𝑋 ( 𝑂 ‘ 𝑥 )  ∈  ℕ0 ) ) | 
						
							| 15 | 11 13 14 | mpbir2an | ⊢ 𝑂 : 𝑋 ⟶ ℕ0 |