Step |
Hyp |
Ref |
Expression |
1 |
|
odf1.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
odf1.2 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
3 |
|
odf1.3 |
⊢ · = ( .g ‘ 𝐺 ) |
4 |
|
odf1.4 |
⊢ 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) |
5 |
1 3
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 · 𝐴 ) ∈ 𝑋 ) |
6 |
5
|
3expa |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 · 𝐴 ) ∈ 𝑋 ) |
7 |
6
|
an32s |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 · 𝐴 ) ∈ 𝑋 ) |
8 |
7 4
|
fmptd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → 𝐹 : ℤ ⟶ 𝑋 ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → 𝐹 : ℤ ⟶ 𝑋 ) |
10 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 · 𝐴 ) = ( 𝑦 · 𝐴 ) ) |
11 |
|
ovex |
⊢ ( 𝑥 · 𝐴 ) ∈ V |
12 |
10 4 11
|
fvmpt3i |
⊢ ( 𝑦 ∈ ℤ → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 · 𝐴 ) ) |
13 |
|
oveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 · 𝐴 ) = ( 𝑧 · 𝐴 ) ) |
14 |
13 4 11
|
fvmpt3i |
⊢ ( 𝑧 ∈ ℤ → ( 𝐹 ‘ 𝑧 ) = ( 𝑧 · 𝐴 ) ) |
15 |
12 14
|
eqeqan12d |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ ( 𝑦 · 𝐴 ) = ( 𝑧 · 𝐴 ) ) ) |
16 |
15
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ ( 𝑦 · 𝐴 ) = ( 𝑧 · 𝐴 ) ) ) |
17 |
|
simplr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( 𝑂 ‘ 𝐴 ) = 0 ) |
18 |
17
|
breq1d |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑦 − 𝑧 ) ↔ 0 ∥ ( 𝑦 − 𝑧 ) ) ) |
19 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
20 |
1 2 3 19
|
odcong |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑦 − 𝑧 ) ↔ ( 𝑦 · 𝐴 ) = ( 𝑧 · 𝐴 ) ) ) |
21 |
20
|
ad4ant124 |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑦 − 𝑧 ) ↔ ( 𝑦 · 𝐴 ) = ( 𝑧 · 𝐴 ) ) ) |
22 |
|
zsubcl |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( 𝑦 − 𝑧 ) ∈ ℤ ) |
23 |
22
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( 𝑦 − 𝑧 ) ∈ ℤ ) |
24 |
|
0dvds |
⊢ ( ( 𝑦 − 𝑧 ) ∈ ℤ → ( 0 ∥ ( 𝑦 − 𝑧 ) ↔ ( 𝑦 − 𝑧 ) = 0 ) ) |
25 |
23 24
|
syl |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( 0 ∥ ( 𝑦 − 𝑧 ) ↔ ( 𝑦 − 𝑧 ) = 0 ) ) |
26 |
18 21 25
|
3bitr3d |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( 𝑦 · 𝐴 ) = ( 𝑧 · 𝐴 ) ↔ ( 𝑦 − 𝑧 ) = 0 ) ) |
27 |
|
zcn |
⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ ) |
28 |
|
zcn |
⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℂ ) |
29 |
|
subeq0 |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑦 − 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ) |
30 |
27 28 29
|
syl2an |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( 𝑦 − 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ) |
31 |
30
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( 𝑦 − 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ) |
32 |
16 26 31
|
3bitrd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ 𝑦 = 𝑧 ) ) |
33 |
32
|
biimpd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
34 |
33
|
ralrimivva |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ∀ 𝑦 ∈ ℤ ∀ 𝑧 ∈ ℤ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
35 |
|
dff13 |
⊢ ( 𝐹 : ℤ –1-1→ 𝑋 ↔ ( 𝐹 : ℤ ⟶ 𝑋 ∧ ∀ 𝑦 ∈ ℤ ∀ 𝑧 ∈ ℤ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
36 |
9 34 35
|
sylanbrc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → 𝐹 : ℤ –1-1→ 𝑋 ) |
37 |
1 2 3 19
|
odid |
⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
38 |
1 19 3
|
mulg0 |
⊢ ( 𝐴 ∈ 𝑋 → ( 0 · 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
39 |
37 38
|
eqtr4d |
⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = ( 0 · 𝐴 ) ) |
40 |
39
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : ℤ –1-1→ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = ( 0 · 𝐴 ) ) |
41 |
1 2
|
odcl |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
42 |
41
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : ℤ –1-1→ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
43 |
42
|
nn0zd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : ℤ –1-1→ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) |
44 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑂 ‘ 𝐴 ) → ( 𝑥 · 𝐴 ) = ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) ) |
45 |
44 4 11
|
fvmpt3i |
⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℤ → ( 𝐹 ‘ ( 𝑂 ‘ 𝐴 ) ) = ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) ) |
46 |
43 45
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : ℤ –1-1→ 𝑋 ) → ( 𝐹 ‘ ( 𝑂 ‘ 𝐴 ) ) = ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) ) |
47 |
|
0zd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : ℤ –1-1→ 𝑋 ) → 0 ∈ ℤ ) |
48 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 · 𝐴 ) = ( 0 · 𝐴 ) ) |
49 |
48 4 11
|
fvmpt3i |
⊢ ( 0 ∈ ℤ → ( 𝐹 ‘ 0 ) = ( 0 · 𝐴 ) ) |
50 |
47 49
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : ℤ –1-1→ 𝑋 ) → ( 𝐹 ‘ 0 ) = ( 0 · 𝐴 ) ) |
51 |
40 46 50
|
3eqtr4d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : ℤ –1-1→ 𝑋 ) → ( 𝐹 ‘ ( 𝑂 ‘ 𝐴 ) ) = ( 𝐹 ‘ 0 ) ) |
52 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : ℤ –1-1→ 𝑋 ) → 𝐹 : ℤ –1-1→ 𝑋 ) |
53 |
|
f1fveq |
⊢ ( ( 𝐹 : ℤ –1-1→ 𝑋 ∧ ( ( 𝑂 ‘ 𝐴 ) ∈ ℤ ∧ 0 ∈ ℤ ) ) → ( ( 𝐹 ‘ ( 𝑂 ‘ 𝐴 ) ) = ( 𝐹 ‘ 0 ) ↔ ( 𝑂 ‘ 𝐴 ) = 0 ) ) |
54 |
52 43 47 53
|
syl12anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : ℤ –1-1→ 𝑋 ) → ( ( 𝐹 ‘ ( 𝑂 ‘ 𝐴 ) ) = ( 𝐹 ‘ 0 ) ↔ ( 𝑂 ‘ 𝐴 ) = 0 ) ) |
55 |
51 54
|
mpbid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : ℤ –1-1→ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) = 0 ) |
56 |
36 55
|
impbida |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) = 0 ↔ 𝐹 : ℤ –1-1→ 𝑋 ) ) |