| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odf1o1.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | odf1o1.t | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | odf1o1.o | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 4 |  | odf1o1.k | ⊢ 𝐾  =  ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | 
						
							| 5 |  | simpl1 | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  ∧  𝑥  ∈  ℤ )  →  𝐺  ∈  Grp ) | 
						
							| 6 | 1 | subgacs | ⊢ ( 𝐺  ∈  Grp  →  ( SubGrp ‘ 𝐺 )  ∈  ( ACS ‘ 𝑋 ) ) | 
						
							| 7 |  | acsmre | ⊢ ( ( SubGrp ‘ 𝐺 )  ∈  ( ACS ‘ 𝑋 )  →  ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 8 | 5 6 7 | 3syl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  ∧  𝑥  ∈  ℤ )  →  ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 9 |  | simpl2 | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  ∧  𝑥  ∈  ℤ )  →  𝐴  ∈  𝑋 ) | 
						
							| 10 | 9 | snssd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  ∧  𝑥  ∈  ℤ )  →  { 𝐴 }  ⊆  𝑋 ) | 
						
							| 11 | 4 | mrccl | ⊢ ( ( ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ 𝑋 )  ∧  { 𝐴 }  ⊆  𝑋 )  →  ( 𝐾 ‘ { 𝐴 } )  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 12 | 8 10 11 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  ∧  𝑥  ∈  ℤ )  →  ( 𝐾 ‘ { 𝐴 } )  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 13 |  | simpr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  ∧  𝑥  ∈  ℤ )  →  𝑥  ∈  ℤ ) | 
						
							| 14 | 8 4 10 | mrcssidd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  ∧  𝑥  ∈  ℤ )  →  { 𝐴 }  ⊆  ( 𝐾 ‘ { 𝐴 } ) ) | 
						
							| 15 |  | snidg | ⊢ ( 𝐴  ∈  𝑋  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 16 | 9 15 | syl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  ∧  𝑥  ∈  ℤ )  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 17 | 14 16 | sseldd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  ∧  𝑥  ∈  ℤ )  →  𝐴  ∈  ( 𝐾 ‘ { 𝐴 } ) ) | 
						
							| 18 | 2 | subgmulgcl | ⊢ ( ( ( 𝐾 ‘ { 𝐴 } )  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑥  ∈  ℤ  ∧  𝐴  ∈  ( 𝐾 ‘ { 𝐴 } ) )  →  ( 𝑥  ·  𝐴 )  ∈  ( 𝐾 ‘ { 𝐴 } ) ) | 
						
							| 19 | 12 13 17 18 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  ∧  𝑥  ∈  ℤ )  →  ( 𝑥  ·  𝐴 )  ∈  ( 𝐾 ‘ { 𝐴 } ) ) | 
						
							| 20 | 19 | ex | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  ( 𝑥  ∈  ℤ  →  ( 𝑥  ·  𝐴 )  ∈  ( 𝐾 ‘ { 𝐴 } ) ) ) | 
						
							| 21 |  | simpl3 | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑂 ‘ 𝐴 )  =  0 ) | 
						
							| 22 | 21 | breq1d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑂 ‘ 𝐴 )  ∥  ( 𝑥  −  𝑦 )  ↔  0  ∥  ( 𝑥  −  𝑦 ) ) ) | 
						
							| 23 |  | zsubcl | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( 𝑥  −  𝑦 )  ∈  ℤ ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑥  −  𝑦 )  ∈  ℤ ) | 
						
							| 25 |  | 0dvds | ⊢ ( ( 𝑥  −  𝑦 )  ∈  ℤ  →  ( 0  ∥  ( 𝑥  −  𝑦 )  ↔  ( 𝑥  −  𝑦 )  =  0 ) ) | 
						
							| 26 | 24 25 | syl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 0  ∥  ( 𝑥  −  𝑦 )  ↔  ( 𝑥  −  𝑦 )  =  0 ) ) | 
						
							| 27 | 22 26 | bitrd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑂 ‘ 𝐴 )  ∥  ( 𝑥  −  𝑦 )  ↔  ( 𝑥  −  𝑦 )  =  0 ) ) | 
						
							| 28 |  | simpl1 | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  𝐺  ∈  Grp ) | 
						
							| 29 |  | simpl2 | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 30 |  | simprl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  𝑥  ∈  ℤ ) | 
						
							| 31 |  | simprr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  𝑦  ∈  ℤ ) | 
						
							| 32 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 33 | 1 3 2 32 | odcong | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑂 ‘ 𝐴 )  ∥  ( 𝑥  −  𝑦 )  ↔  ( 𝑥  ·  𝐴 )  =  ( 𝑦  ·  𝐴 ) ) ) | 
						
							| 34 | 28 29 30 31 33 | syl112anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑂 ‘ 𝐴 )  ∥  ( 𝑥  −  𝑦 )  ↔  ( 𝑥  ·  𝐴 )  =  ( 𝑦  ·  𝐴 ) ) ) | 
						
							| 35 |  | zcn | ⊢ ( 𝑥  ∈  ℤ  →  𝑥  ∈  ℂ ) | 
						
							| 36 |  | zcn | ⊢ ( 𝑦  ∈  ℤ  →  𝑦  ∈  ℂ ) | 
						
							| 37 |  | subeq0 | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( ( 𝑥  −  𝑦 )  =  0  ↔  𝑥  =  𝑦 ) ) | 
						
							| 38 | 35 36 37 | syl2an | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( ( 𝑥  −  𝑦 )  =  0  ↔  𝑥  =  𝑦 ) ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑥  −  𝑦 )  =  0  ↔  𝑥  =  𝑦 ) ) | 
						
							| 40 | 27 34 39 | 3bitr3d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑥  ·  𝐴 )  =  ( 𝑦  ·  𝐴 )  ↔  𝑥  =  𝑦 ) ) | 
						
							| 41 | 40 | ex | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( ( 𝑥  ·  𝐴 )  =  ( 𝑦  ·  𝐴 )  ↔  𝑥  =  𝑦 ) ) ) | 
						
							| 42 | 20 41 | dom2lem | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) ) : ℤ –1-1→ ( 𝐾 ‘ { 𝐴 } ) ) | 
						
							| 43 | 19 | fmpttd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) ) : ℤ ⟶ ( 𝐾 ‘ { 𝐴 } ) ) | 
						
							| 44 |  | eqid | ⊢ ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) )  =  ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) ) | 
						
							| 45 | 1 2 44 4 | cycsubg2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐾 ‘ { 𝐴 } )  =  ran  ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) ) ) | 
						
							| 46 | 45 | 3adant3 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  ( 𝐾 ‘ { 𝐴 } )  =  ran  ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) ) ) | 
						
							| 47 | 46 | eqcomd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  ran  ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) )  =  ( 𝐾 ‘ { 𝐴 } ) ) | 
						
							| 48 |  | dffo2 | ⊢ ( ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) ) : ℤ –onto→ ( 𝐾 ‘ { 𝐴 } )  ↔  ( ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) ) : ℤ ⟶ ( 𝐾 ‘ { 𝐴 } )  ∧  ran  ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) )  =  ( 𝐾 ‘ { 𝐴 } ) ) ) | 
						
							| 49 | 43 47 48 | sylanbrc | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) ) : ℤ –onto→ ( 𝐾 ‘ { 𝐴 } ) ) | 
						
							| 50 |  | df-f1o | ⊢ ( ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) ) : ℤ –1-1-onto→ ( 𝐾 ‘ { 𝐴 } )  ↔  ( ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) ) : ℤ –1-1→ ( 𝐾 ‘ { 𝐴 } )  ∧  ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) ) : ℤ –onto→ ( 𝐾 ‘ { 𝐴 } ) ) ) | 
						
							| 51 | 42 49 50 | sylanbrc | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) ) : ℤ –1-1-onto→ ( 𝐾 ‘ { 𝐴 } ) ) |