| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odf1o1.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
odf1o1.t |
⊢ · = ( .g ‘ 𝐺 ) |
| 3 |
|
odf1o1.o |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
| 4 |
|
odf1o1.k |
⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) |
| 5 |
|
simpl1 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) → 𝐺 ∈ Grp ) |
| 6 |
|
elfzoelz |
⊢ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) → 𝑥 ∈ ℤ ) |
| 7 |
6
|
adantl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) → 𝑥 ∈ ℤ ) |
| 8 |
|
simpl2 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) → 𝐴 ∈ 𝑋 ) |
| 9 |
1 2
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 · 𝐴 ) ∈ 𝑋 ) |
| 10 |
5 7 8 9
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) → ( 𝑥 · 𝐴 ) ∈ 𝑋 ) |
| 11 |
10
|
ex |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) → ( 𝑥 · 𝐴 ) ∈ 𝑋 ) ) |
| 12 |
|
simpl3 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) |
| 13 |
12
|
nncnd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) ) → ( 𝑂 ‘ 𝐴 ) ∈ ℂ ) |
| 14 |
13
|
subid1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) ) → ( ( 𝑂 ‘ 𝐴 ) − 0 ) = ( 𝑂 ‘ 𝐴 ) ) |
| 15 |
14
|
breq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) ) → ( ( ( 𝑂 ‘ 𝐴 ) − 0 ) ∥ ( 𝑥 − 𝑦 ) ↔ ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑥 − 𝑦 ) ) ) |
| 16 |
|
fzocongeq |
⊢ ( ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) → ( ( ( 𝑂 ‘ 𝐴 ) − 0 ) ∥ ( 𝑥 − 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
| 17 |
16
|
adantl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) ) → ( ( ( 𝑂 ‘ 𝐴 ) − 0 ) ∥ ( 𝑥 − 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
| 18 |
|
simpl1 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) ) → 𝐺 ∈ Grp ) |
| 19 |
|
simpl2 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) ) → 𝐴 ∈ 𝑋 ) |
| 20 |
6
|
ad2antrl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) ) → 𝑥 ∈ ℤ ) |
| 21 |
|
elfzoelz |
⊢ ( 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) → 𝑦 ∈ ℤ ) |
| 22 |
21
|
ad2antll |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) ) → 𝑦 ∈ ℤ ) |
| 23 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 24 |
1 3 2 23
|
odcong |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑥 − 𝑦 ) ↔ ( 𝑥 · 𝐴 ) = ( 𝑦 · 𝐴 ) ) ) |
| 25 |
18 19 20 22 24
|
syl112anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑥 − 𝑦 ) ↔ ( 𝑥 · 𝐴 ) = ( 𝑦 · 𝐴 ) ) ) |
| 26 |
15 17 25
|
3bitr3rd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) ) → ( ( 𝑥 · 𝐴 ) = ( 𝑦 · 𝐴 ) ↔ 𝑥 = 𝑦 ) ) |
| 27 |
26
|
ex |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) → ( ( 𝑥 · 𝐴 ) = ( 𝑦 · 𝐴 ) ↔ 𝑥 = 𝑦 ) ) ) |
| 28 |
11 27
|
dom2lem |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) –1-1→ 𝑋 ) |
| 29 |
|
f1fn |
⊢ ( ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) –1-1→ 𝑋 → ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) Fn ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) |
| 30 |
28 29
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) Fn ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) |
| 31 |
|
resss |
⊢ ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) ↾ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) ⊆ ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) |
| 32 |
6
|
ssriv |
⊢ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ⊆ ℤ |
| 33 |
|
resmpt |
⊢ ( ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ⊆ ℤ → ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) ↾ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) = ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ) |
| 34 |
32 33
|
ax-mp |
⊢ ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) ↾ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) = ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) |
| 35 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 · 𝐴 ) = ( 𝑦 · 𝐴 ) ) |
| 36 |
35
|
cbvmptv |
⊢ ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) = ( 𝑦 ∈ ℤ ↦ ( 𝑦 · 𝐴 ) ) |
| 37 |
31 34 36
|
3sstr3i |
⊢ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ⊆ ( 𝑦 ∈ ℤ ↦ ( 𝑦 · 𝐴 ) ) |
| 38 |
|
rnss |
⊢ ( ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ⊆ ( 𝑦 ∈ ℤ ↦ ( 𝑦 · 𝐴 ) ) → ran ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ⊆ ran ( 𝑦 ∈ ℤ ↦ ( 𝑦 · 𝐴 ) ) ) |
| 39 |
37 38
|
mp1i |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ran ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ⊆ ran ( 𝑦 ∈ ℤ ↦ ( 𝑦 · 𝐴 ) ) ) |
| 40 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) → 𝑦 ∈ ℤ ) |
| 41 |
|
simpl3 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) |
| 42 |
|
zmodfzo |
⊢ ( ( 𝑦 ∈ ℤ ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑦 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) |
| 43 |
40 41 42
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) → ( 𝑦 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) |
| 44 |
1 3 2 23
|
odmod |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑦 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( 𝑦 · 𝐴 ) ) |
| 45 |
44
|
3an1rs |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) → ( ( 𝑦 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( 𝑦 · 𝐴 ) ) |
| 46 |
45
|
eqcomd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) → ( 𝑦 · 𝐴 ) = ( ( 𝑦 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) |
| 47 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 mod ( 𝑂 ‘ 𝐴 ) ) → ( 𝑥 · 𝐴 ) = ( ( 𝑦 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) |
| 48 |
47
|
rspceeqv |
⊢ ( ( ( 𝑦 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ ( 𝑦 · 𝐴 ) = ( ( 𝑦 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) → ∃ 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ( 𝑦 · 𝐴 ) = ( 𝑥 · 𝐴 ) ) |
| 49 |
43 46 48
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) → ∃ 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ( 𝑦 · 𝐴 ) = ( 𝑥 · 𝐴 ) ) |
| 50 |
|
ovex |
⊢ ( 𝑦 · 𝐴 ) ∈ V |
| 51 |
|
eqid |
⊢ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) = ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) |
| 52 |
51
|
elrnmpt |
⊢ ( ( 𝑦 · 𝐴 ) ∈ V → ( ( 𝑦 · 𝐴 ) ∈ ran ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ↔ ∃ 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ( 𝑦 · 𝐴 ) = ( 𝑥 · 𝐴 ) ) ) |
| 53 |
50 52
|
ax-mp |
⊢ ( ( 𝑦 · 𝐴 ) ∈ ran ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ↔ ∃ 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ( 𝑦 · 𝐴 ) = ( 𝑥 · 𝐴 ) ) |
| 54 |
49 53
|
sylibr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) → ( 𝑦 · 𝐴 ) ∈ ran ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ) |
| 55 |
54
|
fmpttd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑦 ∈ ℤ ↦ ( 𝑦 · 𝐴 ) ) : ℤ ⟶ ran ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ) |
| 56 |
55
|
frnd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ran ( 𝑦 ∈ ℤ ↦ ( 𝑦 · 𝐴 ) ) ⊆ ran ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ) |
| 57 |
39 56
|
eqssd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ran ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) = ran ( 𝑦 ∈ ℤ ↦ ( 𝑦 · 𝐴 ) ) ) |
| 58 |
|
eqid |
⊢ ( 𝑦 ∈ ℤ ↦ ( 𝑦 · 𝐴 ) ) = ( 𝑦 ∈ ℤ ↦ ( 𝑦 · 𝐴 ) ) |
| 59 |
1 2 58 4
|
cycsubg2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐾 ‘ { 𝐴 } ) = ran ( 𝑦 ∈ ℤ ↦ ( 𝑦 · 𝐴 ) ) ) |
| 60 |
59
|
3adant3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝐾 ‘ { 𝐴 } ) = ran ( 𝑦 ∈ ℤ ↦ ( 𝑦 · 𝐴 ) ) ) |
| 61 |
57 60
|
eqtr4d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ran ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) = ( 𝐾 ‘ { 𝐴 } ) ) |
| 62 |
|
df-fo |
⊢ ( ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) –onto→ ( 𝐾 ‘ { 𝐴 } ) ↔ ( ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) Fn ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ ran ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) = ( 𝐾 ‘ { 𝐴 } ) ) ) |
| 63 |
30 61 62
|
sylanbrc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) –onto→ ( 𝐾 ‘ { 𝐴 } ) ) |
| 64 |
|
df-f1 |
⊢ ( ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) –1-1→ 𝑋 ↔ ( ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ⟶ 𝑋 ∧ Fun ◡ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ) ) |
| 65 |
64
|
simprbi |
⊢ ( ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) –1-1→ 𝑋 → Fun ◡ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ) |
| 66 |
28 65
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → Fun ◡ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ) |
| 67 |
|
dff1o3 |
⊢ ( ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) –1-1-onto→ ( 𝐾 ‘ { 𝐴 } ) ↔ ( ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) –onto→ ( 𝐾 ‘ { 𝐴 } ) ∧ Fun ◡ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ) ) |
| 68 |
63 66 67
|
sylanbrc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) –1-1-onto→ ( 𝐾 ‘ { 𝐴 } ) ) |