| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odval.1 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | odval.2 | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | odval.3 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 4 |  | odval.4 | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( Base ‘ 𝑔 )  =  ( Base ‘ 𝐺 ) ) | 
						
							| 6 | 5 1 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ( Base ‘ 𝑔 )  =  𝑋 ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( .g ‘ 𝑔 )  =  ( .g ‘ 𝐺 ) ) | 
						
							| 8 | 7 2 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ( .g ‘ 𝑔 )  =   ·  ) | 
						
							| 9 | 8 | oveqd | ⊢ ( 𝑔  =  𝐺  →  ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 )  =  ( 𝑦  ·  𝑥 ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( 0g ‘ 𝑔 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 11 | 10 3 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ( 0g ‘ 𝑔 )  =   0  ) | 
						
							| 12 | 9 11 | eqeq12d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 )  =  ( 0g ‘ 𝑔 )  ↔  ( 𝑦  ·  𝑥 )  =   0  ) ) | 
						
							| 13 | 12 | rabbidv | ⊢ ( 𝑔  =  𝐺  →  { 𝑦  ∈  ℕ  ∣  ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 )  =  ( 0g ‘ 𝑔 ) }  =  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  } ) | 
						
							| 14 | 13 | csbeq1d | ⊢ ( 𝑔  =  𝐺  →  ⦋ { 𝑦  ∈  ℕ  ∣  ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 )  =  ( 0g ‘ 𝑔 ) }  /  𝑖 ⦌ if ( 𝑖  =  ∅ ,  0 ,  inf ( 𝑖 ,  ℝ ,   <  ) )  =  ⦋ { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  /  𝑖 ⦌ if ( 𝑖  =  ∅ ,  0 ,  inf ( 𝑖 ,  ℝ ,   <  ) ) ) | 
						
							| 15 | 6 14 | mpteq12dv | ⊢ ( 𝑔  =  𝐺  →  ( 𝑥  ∈  ( Base ‘ 𝑔 )  ↦  ⦋ { 𝑦  ∈  ℕ  ∣  ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 )  =  ( 0g ‘ 𝑔 ) }  /  𝑖 ⦌ if ( 𝑖  =  ∅ ,  0 ,  inf ( 𝑖 ,  ℝ ,   <  ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  /  𝑖 ⦌ if ( 𝑖  =  ∅ ,  0 ,  inf ( 𝑖 ,  ℝ ,   <  ) ) ) ) | 
						
							| 16 |  | df-od | ⊢ od  =  ( 𝑔  ∈  V  ↦  ( 𝑥  ∈  ( Base ‘ 𝑔 )  ↦  ⦋ { 𝑦  ∈  ℕ  ∣  ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 )  =  ( 0g ‘ 𝑔 ) }  /  𝑖 ⦌ if ( 𝑖  =  ∅ ,  0 ,  inf ( 𝑖 ,  ℝ ,   <  ) ) ) ) | 
						
							| 17 | 1 | fvexi | ⊢ 𝑋  ∈  V | 
						
							| 18 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 19 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 20 | 19 | rabex | ⊢ { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  ∈  V | 
						
							| 21 |  | eqeq1 | ⊢ ( 𝑖  =  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  →  ( 𝑖  =  ∅  ↔  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  =  ∅ ) ) | 
						
							| 22 |  | infeq1 | ⊢ ( 𝑖  =  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  →  inf ( 𝑖 ,  ℝ ,   <  )  =  inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  } ,  ℝ ,   <  ) ) | 
						
							| 23 | 21 22 | ifbieq2d | ⊢ ( 𝑖  =  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  →  if ( 𝑖  =  ∅ ,  0 ,  inf ( 𝑖 ,  ℝ ,   <  ) )  =  if ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  =  ∅ ,  0 ,  inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  } ,  ℝ ,   <  ) ) ) | 
						
							| 24 | 20 23 | csbie | ⊢ ⦋ { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  /  𝑖 ⦌ if ( 𝑖  =  ∅ ,  0 ,  inf ( 𝑖 ,  ℝ ,   <  ) )  =  if ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  =  ∅ ,  0 ,  inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  } ,  ℝ ,   <  ) ) | 
						
							| 25 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 26 | 25 | a1i | ⊢ ( ( ⊤  ∧  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  =  ∅ )  →  0  ∈  ℕ0 ) | 
						
							| 27 |  | df-ne | ⊢ ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  ≠  ∅  ↔  ¬  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  =  ∅ ) | 
						
							| 28 |  | ssrab2 | ⊢ { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  ⊆  ℕ | 
						
							| 29 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 30 | 28 29 | sseqtri | ⊢ { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  ⊆  ( ℤ≥ ‘ 1 ) | 
						
							| 31 |  | infssuzcl | ⊢ ( ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  ⊆  ( ℤ≥ ‘ 1 )  ∧  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  ≠  ∅ )  →  inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  } ,  ℝ ,   <  )  ∈  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  } ) | 
						
							| 32 | 30 31 | mpan | ⊢ ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  ≠  ∅  →  inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  } ,  ℝ ,   <  )  ∈  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  } ) | 
						
							| 33 | 28 32 | sselid | ⊢ ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  ≠  ∅  →  inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  } ,  ℝ ,   <  )  ∈  ℕ ) | 
						
							| 34 | 27 33 | sylbir | ⊢ ( ¬  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  =  ∅  →  inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  } ,  ℝ ,   <  )  ∈  ℕ ) | 
						
							| 35 | 34 | nnnn0d | ⊢ ( ¬  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  =  ∅  →  inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  } ,  ℝ ,   <  )  ∈  ℕ0 ) | 
						
							| 36 | 35 | adantl | ⊢ ( ( ⊤  ∧  ¬  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  =  ∅ )  →  inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  } ,  ℝ ,   <  )  ∈  ℕ0 ) | 
						
							| 37 | 26 36 | ifclda | ⊢ ( ⊤  →  if ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  =  ∅ ,  0 ,  inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  } ,  ℝ ,   <  ) )  ∈  ℕ0 ) | 
						
							| 38 | 37 | mptru | ⊢ if ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  =  ∅ ,  0 ,  inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  } ,  ℝ ,   <  ) )  ∈  ℕ0 | 
						
							| 39 | 24 38 | eqeltri | ⊢ ⦋ { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  /  𝑖 ⦌ if ( 𝑖  =  ∅ ,  0 ,  inf ( 𝑖 ,  ℝ ,   <  ) )  ∈  ℕ0 | 
						
							| 40 | 39 | rgenw | ⊢ ∀ 𝑥  ∈  𝑋 ⦋ { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  /  𝑖 ⦌ if ( 𝑖  =  ∅ ,  0 ,  inf ( 𝑖 ,  ℝ ,   <  ) )  ∈  ℕ0 | 
						
							| 41 | 17 18 40 | mptexw | ⊢ ( 𝑥  ∈  𝑋  ↦  ⦋ { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  /  𝑖 ⦌ if ( 𝑖  =  ∅ ,  0 ,  inf ( 𝑖 ,  ℝ ,   <  ) ) )  ∈  V | 
						
							| 42 | 15 16 41 | fvmpt | ⊢ ( 𝐺  ∈  V  →  ( od ‘ 𝐺 )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  /  𝑖 ⦌ if ( 𝑖  =  ∅ ,  0 ,  inf ( 𝑖 ,  ℝ ,   <  ) ) ) ) | 
						
							| 43 |  | fvprc | ⊢ ( ¬  𝐺  ∈  V  →  ( od ‘ 𝐺 )  =  ∅ ) | 
						
							| 44 |  | fvprc | ⊢ ( ¬  𝐺  ∈  V  →  ( Base ‘ 𝐺 )  =  ∅ ) | 
						
							| 45 | 1 44 | eqtrid | ⊢ ( ¬  𝐺  ∈  V  →  𝑋  =  ∅ ) | 
						
							| 46 | 45 | mpteq1d | ⊢ ( ¬  𝐺  ∈  V  →  ( 𝑥  ∈  𝑋  ↦  ⦋ { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  /  𝑖 ⦌ if ( 𝑖  =  ∅ ,  0 ,  inf ( 𝑖 ,  ℝ ,   <  ) ) )  =  ( 𝑥  ∈  ∅  ↦  ⦋ { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  /  𝑖 ⦌ if ( 𝑖  =  ∅ ,  0 ,  inf ( 𝑖 ,  ℝ ,   <  ) ) ) ) | 
						
							| 47 |  | mpt0 | ⊢ ( 𝑥  ∈  ∅  ↦  ⦋ { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  /  𝑖 ⦌ if ( 𝑖  =  ∅ ,  0 ,  inf ( 𝑖 ,  ℝ ,   <  ) ) )  =  ∅ | 
						
							| 48 | 46 47 | eqtrdi | ⊢ ( ¬  𝐺  ∈  V  →  ( 𝑥  ∈  𝑋  ↦  ⦋ { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  /  𝑖 ⦌ if ( 𝑖  =  ∅ ,  0 ,  inf ( 𝑖 ,  ℝ ,   <  ) ) )  =  ∅ ) | 
						
							| 49 | 43 48 | eqtr4d | ⊢ ( ¬  𝐺  ∈  V  →  ( od ‘ 𝐺 )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  /  𝑖 ⦌ if ( 𝑖  =  ∅ ,  0 ,  inf ( 𝑖 ,  ℝ ,   <  ) ) ) ) | 
						
							| 50 | 42 49 | pm2.61i | ⊢ ( od ‘ 𝐺 )  =  ( 𝑥  ∈  𝑋  ↦  ⦋ { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  /  𝑖 ⦌ if ( 𝑖  =  ∅ ,  0 ,  inf ( 𝑖 ,  ℝ ,   <  ) ) ) | 
						
							| 51 | 4 50 | eqtri | ⊢ 𝑂  =  ( 𝑥  ∈  𝑋  ↦  ⦋ { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝑥 )  =   0  }  /  𝑖 ⦌ if ( 𝑖  =  ∅ ,  0 ,  inf ( 𝑖 ,  ℝ ,   <  ) ) ) |