Step |
Hyp |
Ref |
Expression |
1 |
|
odval.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
odval.2 |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
odval.3 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
4 |
|
odval.4 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
5 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) |
6 |
5 1
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = 𝑋 ) |
7 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( .g ‘ 𝑔 ) = ( .g ‘ 𝐺 ) ) |
8 |
7 2
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( .g ‘ 𝑔 ) = · ) |
9 |
8
|
oveqd |
⊢ ( 𝑔 = 𝐺 → ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 𝑦 · 𝑥 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( 0g ‘ 𝑔 ) = ( 0g ‘ 𝐺 ) ) |
11 |
10 3
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( 0g ‘ 𝑔 ) = 0 ) |
12 |
9 11
|
eqeq12d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) ↔ ( 𝑦 · 𝑥 ) = 0 ) ) |
13 |
12
|
rabbidv |
⊢ ( 𝑔 = 𝐺 → { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } = { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ) |
14 |
13
|
csbeq1d |
⊢ ( 𝑔 = 𝐺 → ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) = ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) |
15 |
6 14
|
mpteq12dv |
⊢ ( 𝑔 = 𝐺 → ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ) |
16 |
|
df-od |
⊢ od = ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ) |
17 |
1
|
fvexi |
⊢ 𝑋 ∈ V |
18 |
|
nn0ex |
⊢ ℕ0 ∈ V |
19 |
|
nnex |
⊢ ℕ ∈ V |
20 |
19
|
rabex |
⊢ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ∈ V |
21 |
|
eqeq1 |
⊢ ( 𝑖 = { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } → ( 𝑖 = ∅ ↔ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) |
22 |
|
infeq1 |
⊢ ( 𝑖 = { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } → inf ( 𝑖 , ℝ , < ) = inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ) |
23 |
21 22
|
ifbieq2d |
⊢ ( 𝑖 = { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } → if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) = if ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ) ) |
24 |
20 23
|
csbie |
⊢ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) = if ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ) |
25 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
26 |
25
|
a1i |
⊢ ( ( ⊤ ∧ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ ) → 0 ∈ ℕ0 ) |
27 |
|
df-ne |
⊢ ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ≠ ∅ ↔ ¬ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ ) |
28 |
|
ssrab2 |
⊢ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ⊆ ℕ |
29 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
30 |
28 29
|
sseqtri |
⊢ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ⊆ ( ℤ≥ ‘ 1 ) |
31 |
|
infssuzcl |
⊢ ( ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ⊆ ( ℤ≥ ‘ 1 ) ∧ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ≠ ∅ ) → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ) |
32 |
30 31
|
mpan |
⊢ ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ≠ ∅ → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ) |
33 |
28 32
|
sselid |
⊢ ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ≠ ∅ → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ ℕ ) |
34 |
27 33
|
sylbir |
⊢ ( ¬ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ ℕ ) |
35 |
34
|
nnnn0d |
⊢ ( ¬ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ ℕ0 ) |
36 |
35
|
adantl |
⊢ ( ( ⊤ ∧ ¬ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ ) → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ ℕ0 ) |
37 |
26 36
|
ifclda |
⊢ ( ⊤ → if ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ) ∈ ℕ0 ) |
38 |
37
|
mptru |
⊢ if ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ) ∈ ℕ0 |
39 |
24 38
|
eqeltri |
⊢ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ∈ ℕ0 |
40 |
39
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝑋 ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ∈ ℕ0 |
41 |
17 18 40
|
mptexw |
⊢ ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ∈ V |
42 |
15 16 41
|
fvmpt |
⊢ ( 𝐺 ∈ V → ( od ‘ 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ) |
43 |
|
fvprc |
⊢ ( ¬ 𝐺 ∈ V → ( od ‘ 𝐺 ) = ∅ ) |
44 |
|
fvprc |
⊢ ( ¬ 𝐺 ∈ V → ( Base ‘ 𝐺 ) = ∅ ) |
45 |
1 44
|
eqtrid |
⊢ ( ¬ 𝐺 ∈ V → 𝑋 = ∅ ) |
46 |
45
|
mpteq1d |
⊢ ( ¬ 𝐺 ∈ V → ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) = ( 𝑥 ∈ ∅ ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ) |
47 |
|
mpt0 |
⊢ ( 𝑥 ∈ ∅ ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) = ∅ |
48 |
46 47
|
eqtrdi |
⊢ ( ¬ 𝐺 ∈ V → ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) = ∅ ) |
49 |
43 48
|
eqtr4d |
⊢ ( ¬ 𝐺 ∈ V → ( od ‘ 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ) |
50 |
42 49
|
pm2.61i |
⊢ ( od ‘ 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) |
51 |
4 50
|
eqtri |
⊢ 𝑂 = ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) |