Metamath Proof Explorer


Theorem odfval

Description: Value of the order function. For a shorter proof using ax-rep , see odfvalALT . (Contributed by Mario Carneiro, 13-Jul-2014) (Revised by AV, 5-Oct-2020) Remove depedency on ax-rep . (Revised by Rohan Ridenour, 17-Aug-2023)

Ref Expression
Hypotheses odval.1 𝑋 = ( Base ‘ 𝐺 )
odval.2 · = ( .g𝐺 )
odval.3 0 = ( 0g𝐺 )
odval.4 𝑂 = ( od ‘ 𝐺 )
Assertion odfval 𝑂 = ( 𝑥𝑋 { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) )

Proof

Step Hyp Ref Expression
1 odval.1 𝑋 = ( Base ‘ 𝐺 )
2 odval.2 · = ( .g𝐺 )
3 odval.3 0 = ( 0g𝐺 )
4 odval.4 𝑂 = ( od ‘ 𝐺 )
5 fveq2 ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) )
6 5 1 eqtr4di ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = 𝑋 )
7 fveq2 ( 𝑔 = 𝐺 → ( .g𝑔 ) = ( .g𝐺 ) )
8 7 2 eqtr4di ( 𝑔 = 𝐺 → ( .g𝑔 ) = · )
9 8 oveqd ( 𝑔 = 𝐺 → ( 𝑦 ( .g𝑔 ) 𝑥 ) = ( 𝑦 · 𝑥 ) )
10 fveq2 ( 𝑔 = 𝐺 → ( 0g𝑔 ) = ( 0g𝐺 ) )
11 10 3 eqtr4di ( 𝑔 = 𝐺 → ( 0g𝑔 ) = 0 )
12 9 11 eqeq12d ( 𝑔 = 𝐺 → ( ( 𝑦 ( .g𝑔 ) 𝑥 ) = ( 0g𝑔 ) ↔ ( 𝑦 · 𝑥 ) = 0 ) )
13 12 rabbidv ( 𝑔 = 𝐺 → { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g𝑔 ) 𝑥 ) = ( 0g𝑔 ) } = { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } )
14 13 csbeq1d ( 𝑔 = 𝐺 { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g𝑔 ) 𝑥 ) = ( 0g𝑔 ) } / 𝑖 if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) = { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) )
15 6 14 mpteq12dv ( 𝑔 = 𝐺 → ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g𝑔 ) 𝑥 ) = ( 0g𝑔 ) } / 𝑖 if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) = ( 𝑥𝑋 { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) )
16 df-od od = ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g𝑔 ) 𝑥 ) = ( 0g𝑔 ) } / 𝑖 if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) )
17 1 fvexi 𝑋 ∈ V
18 nn0ex 0 ∈ V
19 nnex ℕ ∈ V
20 19 rabex { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ∈ V
21 eqeq1 ( 𝑖 = { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } → ( 𝑖 = ∅ ↔ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ ) )
22 infeq1 ( 𝑖 = { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } → inf ( 𝑖 , ℝ , < ) = inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) )
23 21 22 ifbieq2d ( 𝑖 = { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } → if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) = if ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ) )
24 20 23 csbie { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) = if ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) )
25 0nn0 0 ∈ ℕ0
26 25 a1i ( ( ⊤ ∧ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ ) → 0 ∈ ℕ0 )
27 df-ne ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ≠ ∅ ↔ ¬ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ )
28 ssrab2 { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ⊆ ℕ
29 nnuz ℕ = ( ℤ ‘ 1 )
30 28 29 sseqtri { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ⊆ ( ℤ ‘ 1 )
31 infssuzcl ( ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ⊆ ( ℤ ‘ 1 ) ∧ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ≠ ∅ ) → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } )
32 30 31 mpan ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ≠ ∅ → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } )
33 28 32 sseldi ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ≠ ∅ → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ ℕ )
34 27 33 sylbir ( ¬ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ ℕ )
35 34 nnnn0d ( ¬ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ ℕ0 )
36 35 adantl ( ( ⊤ ∧ ¬ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ ) → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ ℕ0 )
37 26 36 ifclda ( ⊤ → if ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ) ∈ ℕ0 )
38 37 mptru if ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ) ∈ ℕ0
39 24 38 eqeltri { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ∈ ℕ0
40 39 rgenw 𝑥𝑋 { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ∈ ℕ0
41 17 18 40 mptexw ( 𝑥𝑋 { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ∈ V
42 15 16 41 fvmpt ( 𝐺 ∈ V → ( od ‘ 𝐺 ) = ( 𝑥𝑋 { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) )
43 fvprc ( ¬ 𝐺 ∈ V → ( od ‘ 𝐺 ) = ∅ )
44 fvprc ( ¬ 𝐺 ∈ V → ( Base ‘ 𝐺 ) = ∅ )
45 1 44 syl5eq ( ¬ 𝐺 ∈ V → 𝑋 = ∅ )
46 45 mpteq1d ( ¬ 𝐺 ∈ V → ( 𝑥𝑋 { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) = ( 𝑥 ∈ ∅ ↦ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) )
47 mpt0 ( 𝑥 ∈ ∅ ↦ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) = ∅
48 46 47 eqtrdi ( ¬ 𝐺 ∈ V → ( 𝑥𝑋 { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) = ∅ )
49 43 48 eqtr4d ( ¬ 𝐺 ∈ V → ( od ‘ 𝐺 ) = ( 𝑥𝑋 { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) )
50 42 49 pm2.61i ( od ‘ 𝐺 ) = ( 𝑥𝑋 { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) )
51 4 50 eqtri 𝑂 = ( 𝑥𝑋 { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) )