Step |
Hyp |
Ref |
Expression |
1 |
|
odval.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
odval.2 |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
odval.3 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
4 |
|
odval.4 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
5 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) |
6 |
5 1
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = 𝑋 ) |
7 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( .g ‘ 𝑔 ) = ( .g ‘ 𝐺 ) ) |
8 |
7 2
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( .g ‘ 𝑔 ) = · ) |
9 |
8
|
oveqd |
⊢ ( 𝑔 = 𝐺 → ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 𝑦 · 𝑥 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( 0g ‘ 𝑔 ) = ( 0g ‘ 𝐺 ) ) |
11 |
10 3
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( 0g ‘ 𝑔 ) = 0 ) |
12 |
9 11
|
eqeq12d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) ↔ ( 𝑦 · 𝑥 ) = 0 ) ) |
13 |
12
|
rabbidv |
⊢ ( 𝑔 = 𝐺 → { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } = { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ) |
14 |
13
|
csbeq1d |
⊢ ( 𝑔 = 𝐺 → ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) = ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) |
15 |
6 14
|
mpteq12dv |
⊢ ( 𝑔 = 𝐺 → ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ) |
16 |
|
df-od |
⊢ od = ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ) |
17 |
15 16 1
|
mptfvmpt |
⊢ ( 𝐺 ∈ V → ( od ‘ 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ) |
18 |
|
fvprc |
⊢ ( ¬ 𝐺 ∈ V → ( od ‘ 𝐺 ) = ∅ ) |
19 |
|
fvprc |
⊢ ( ¬ 𝐺 ∈ V → ( Base ‘ 𝐺 ) = ∅ ) |
20 |
1 19
|
eqtrid |
⊢ ( ¬ 𝐺 ∈ V → 𝑋 = ∅ ) |
21 |
20
|
mpteq1d |
⊢ ( ¬ 𝐺 ∈ V → ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) = ( 𝑥 ∈ ∅ ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ) |
22 |
|
mpt0 |
⊢ ( 𝑥 ∈ ∅ ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) = ∅ |
23 |
21 22
|
eqtrdi |
⊢ ( ¬ 𝐺 ∈ V → ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) = ∅ ) |
24 |
18 23
|
eqtr4d |
⊢ ( ¬ 𝐺 ∈ V → ( od ‘ 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ) |
25 |
17 24
|
pm2.61i |
⊢ ( od ‘ 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) |
26 |
4 25
|
eqtri |
⊢ 𝑂 = ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) |