| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odhash.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
odhash.o |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
| 3 |
|
odhash.k |
⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) |
| 4 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
| 5 |
1 4 2 3
|
odf1o1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) : ℤ –1-1-onto→ ( 𝐾 ‘ { 𝐴 } ) ) |
| 6 |
|
zex |
⊢ ℤ ∈ V |
| 7 |
6
|
f1oen |
⊢ ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) : ℤ –1-1-onto→ ( 𝐾 ‘ { 𝐴 } ) → ℤ ≈ ( 𝐾 ‘ { 𝐴 } ) ) |
| 8 |
|
hasheni |
⊢ ( ℤ ≈ ( 𝐾 ‘ { 𝐴 } ) → ( ♯ ‘ ℤ ) = ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ) |
| 9 |
5 7 8
|
3syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( ♯ ‘ ℤ ) = ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ) |
| 10 |
|
ominf |
⊢ ¬ ω ∈ Fin |
| 11 |
|
znnen |
⊢ ℤ ≈ ℕ |
| 12 |
|
nnenom |
⊢ ℕ ≈ ω |
| 13 |
11 12
|
entri |
⊢ ℤ ≈ ω |
| 14 |
|
enfi |
⊢ ( ℤ ≈ ω → ( ℤ ∈ Fin ↔ ω ∈ Fin ) ) |
| 15 |
13 14
|
ax-mp |
⊢ ( ℤ ∈ Fin ↔ ω ∈ Fin ) |
| 16 |
10 15
|
mtbir |
⊢ ¬ ℤ ∈ Fin |
| 17 |
|
hashinf |
⊢ ( ( ℤ ∈ V ∧ ¬ ℤ ∈ Fin ) → ( ♯ ‘ ℤ ) = +∞ ) |
| 18 |
6 16 17
|
mp2an |
⊢ ( ♯ ‘ ℤ ) = +∞ |
| 19 |
9 18
|
eqtr3di |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) = +∞ ) |