Step |
Hyp |
Ref |
Expression |
1 |
|
odhash.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
odhash.o |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
3 |
|
odhash.k |
⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) |
4 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
5 |
1 4 2 3
|
odf1o2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) –1-1-onto→ ( 𝐾 ‘ { 𝐴 } ) ) |
6 |
|
ovex |
⊢ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∈ V |
7 |
6
|
f1oen |
⊢ ( ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) –1-1-onto→ ( 𝐾 ‘ { 𝐴 } ) → ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ≈ ( 𝐾 ‘ { 𝐴 } ) ) |
8 |
|
hasheni |
⊢ ( ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ≈ ( 𝐾 ‘ { 𝐴 } ) → ( ♯ ‘ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) = ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ) |
9 |
5 7 8
|
3syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ♯ ‘ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) = ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ) |
10 |
1 2
|
odcl |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
11 |
10
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
12 |
|
hashfzo0 |
⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) = ( 𝑂 ‘ 𝐴 ) ) |
13 |
11 12
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ♯ ‘ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) = ( 𝑂 ‘ 𝐴 ) ) |
14 |
9 13
|
eqtr3d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) = ( 𝑂 ‘ 𝐴 ) ) |