Metamath Proof Explorer


Theorem odhash2

Description: If an element has nonzero order, it generates a subgroup with size equal to the order. (Contributed by Stefan O'Rear, 12-Sep-2015)

Ref Expression
Hypotheses odhash.x 𝑋 = ( Base ‘ 𝐺 )
odhash.o 𝑂 = ( od ‘ 𝐺 )
odhash.k 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) )
Assertion odhash2 ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ( 𝑂𝐴 ) ∈ ℕ ) → ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) = ( 𝑂𝐴 ) )

Proof

Step Hyp Ref Expression
1 odhash.x 𝑋 = ( Base ‘ 𝐺 )
2 odhash.o 𝑂 = ( od ‘ 𝐺 )
3 odhash.k 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) )
4 eqid ( .g𝐺 ) = ( .g𝐺 )
5 1 4 2 3 odf1o2 ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ( 𝑂𝐴 ) ∈ ℕ ) → ( 𝑥 ∈ ( 0 ..^ ( 𝑂𝐴 ) ) ↦ ( 𝑥 ( .g𝐺 ) 𝐴 ) ) : ( 0 ..^ ( 𝑂𝐴 ) ) –1-1-onto→ ( 𝐾 ‘ { 𝐴 } ) )
6 ovex ( 0 ..^ ( 𝑂𝐴 ) ) ∈ V
7 6 f1oen ( ( 𝑥 ∈ ( 0 ..^ ( 𝑂𝐴 ) ) ↦ ( 𝑥 ( .g𝐺 ) 𝐴 ) ) : ( 0 ..^ ( 𝑂𝐴 ) ) –1-1-onto→ ( 𝐾 ‘ { 𝐴 } ) → ( 0 ..^ ( 𝑂𝐴 ) ) ≈ ( 𝐾 ‘ { 𝐴 } ) )
8 hasheni ( ( 0 ..^ ( 𝑂𝐴 ) ) ≈ ( 𝐾 ‘ { 𝐴 } ) → ( ♯ ‘ ( 0 ..^ ( 𝑂𝐴 ) ) ) = ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) )
9 5 7 8 3syl ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ( 𝑂𝐴 ) ∈ ℕ ) → ( ♯ ‘ ( 0 ..^ ( 𝑂𝐴 ) ) ) = ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) )
10 1 2 odcl ( 𝐴𝑋 → ( 𝑂𝐴 ) ∈ ℕ0 )
11 10 3ad2ant2 ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ( 𝑂𝐴 ) ∈ ℕ ) → ( 𝑂𝐴 ) ∈ ℕ0 )
12 hashfzo0 ( ( 𝑂𝐴 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ ( 𝑂𝐴 ) ) ) = ( 𝑂𝐴 ) )
13 11 12 syl ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ( 𝑂𝐴 ) ∈ ℕ ) → ( ♯ ‘ ( 0 ..^ ( 𝑂𝐴 ) ) ) = ( 𝑂𝐴 ) )
14 9 13 eqtr3d ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ( 𝑂𝐴 ) ∈ ℕ ) → ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) = ( 𝑂𝐴 ) )