| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odhash.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | odhash.o | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 3 |  | odhash.k | ⊢ 𝐾  =  ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | 
						
							| 4 |  | eqid | ⊢ ( .g ‘ 𝐺 )  =  ( .g ‘ 𝐺 ) | 
						
							| 5 | 1 4 2 3 | odf1o2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑥  ∈  ( 0 ..^ ( 𝑂 ‘ 𝐴 ) )  ↦  ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) –1-1-onto→ ( 𝐾 ‘ { 𝐴 } ) ) | 
						
							| 6 |  | ovex | ⊢ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) )  ∈  V | 
						
							| 7 | 6 | f1oen | ⊢ ( ( 𝑥  ∈  ( 0 ..^ ( 𝑂 ‘ 𝐴 ) )  ↦  ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) –1-1-onto→ ( 𝐾 ‘ { 𝐴 } )  →  ( 0 ..^ ( 𝑂 ‘ 𝐴 ) )  ≈  ( 𝐾 ‘ { 𝐴 } ) ) | 
						
							| 8 |  | hasheni | ⊢ ( ( 0 ..^ ( 𝑂 ‘ 𝐴 ) )  ≈  ( 𝐾 ‘ { 𝐴 } )  →  ( ♯ ‘ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) )  =  ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ) | 
						
							| 9 | 5 7 8 | 3syl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ♯ ‘ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) )  =  ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ) | 
						
							| 10 | 1 2 | odcl | ⊢ ( 𝐴  ∈  𝑋  →  ( 𝑂 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 11 | 10 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑂 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 12 |  | hashfzo0 | ⊢ ( ( 𝑂 ‘ 𝐴 )  ∈  ℕ0  →  ( ♯ ‘ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) )  =  ( 𝑂 ‘ 𝐴 ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ♯ ‘ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) )  =  ( 𝑂 ‘ 𝐴 ) ) | 
						
							| 14 | 9 13 | eqtr3d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) )  =  ( 𝑂 ‘ 𝐴 ) ) |