| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odhash.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
odhash.o |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
| 3 |
|
odhash.k |
⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) |
| 4 |
1 2
|
odcl |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 5 |
4
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐾 ‘ { 𝐴 } ) ∈ Fin ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 6 |
|
hashcl |
⊢ ( ( 𝐾 ‘ { 𝐴 } ) ∈ Fin → ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ∈ ℕ0 ) |
| 7 |
6
|
nn0red |
⊢ ( ( 𝐾 ‘ { 𝐴 } ) ∈ Fin → ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ∈ ℝ ) |
| 8 |
|
pnfnre |
⊢ +∞ ∉ ℝ |
| 9 |
8
|
neli |
⊢ ¬ +∞ ∈ ℝ |
| 10 |
1 2 3
|
odhash |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) = +∞ ) |
| 11 |
10
|
eleq1d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ∈ ℝ ↔ +∞ ∈ ℝ ) ) |
| 12 |
9 11
|
mtbiri |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ¬ ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ∈ ℝ ) |
| 13 |
12
|
3expia |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) = 0 → ¬ ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ∈ ℝ ) ) |
| 14 |
13
|
necon2ad |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ∈ ℝ → ( 𝑂 ‘ 𝐴 ) ≠ 0 ) ) |
| 15 |
7 14
|
syl5 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐾 ‘ { 𝐴 } ) ∈ Fin → ( 𝑂 ‘ 𝐴 ) ≠ 0 ) ) |
| 16 |
15
|
3impia |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐾 ‘ { 𝐴 } ) ∈ Fin ) → ( 𝑂 ‘ 𝐴 ) ≠ 0 ) |
| 17 |
|
elnnne0 |
⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ ↔ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ∧ ( 𝑂 ‘ 𝐴 ) ≠ 0 ) ) |
| 18 |
5 16 17
|
sylanbrc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐾 ‘ { 𝐴 } ) ∈ Fin ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) |
| 19 |
1 2 3
|
odhash2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) = ( 𝑂 ‘ 𝐴 ) ) |
| 20 |
18 19
|
syld3an3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐾 ‘ { 𝐴 } ) ∈ Fin ) → ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) = ( 𝑂 ‘ 𝐴 ) ) |
| 21 |
20
|
eqcomd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐾 ‘ { 𝐴 } ) ∈ Fin ) → ( 𝑂 ‘ 𝐴 ) = ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ) |