Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o ∅ ) ) |
2 |
1
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 +o ∅ ) ) ) |
3 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o ∅ ) ) |
4 |
3
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o ∅ ) ) ) |
5 |
2 4
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ↔ ( 𝐴 ·o ( 𝐵 +o ∅ ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o ∅ ) ) ) ) |
6 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o 𝑦 ) ) |
7 |
6
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) ) |
8 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝑦 ) ) |
9 |
8
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) |
10 |
7 9
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ↔ ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o suc 𝑦 ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o suc 𝑦 ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ) |
15 |
12 14
|
eqeq12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ↔ ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ) ) |
16 |
|
oveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o 𝐶 ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝑥 = 𝐶 → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) ) |
18 |
|
oveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝐶 ) ) |
19 |
18
|
oveq2d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) |
20 |
17 19
|
eqeq12d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ↔ ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) ) |
21 |
|
omcl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ On ) |
22 |
|
oa0 |
⊢ ( ( 𝐴 ·o 𝐵 ) ∈ On → ( ( 𝐴 ·o 𝐵 ) +o ∅ ) = ( 𝐴 ·o 𝐵 ) ) |
23 |
21 22
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) +o ∅ ) = ( 𝐴 ·o 𝐵 ) ) |
24 |
|
om0 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ·o ∅ ) = ∅ ) |
25 |
24
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o ∅ ) = ∅ ) |
26 |
25
|
oveq2d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o ∅ ) ) = ( ( 𝐴 ·o 𝐵 ) +o ∅ ) ) |
27 |
|
oa0 |
⊢ ( 𝐵 ∈ On → ( 𝐵 +o ∅ ) = 𝐵 ) |
28 |
27
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 +o ∅ ) = 𝐵 ) |
29 |
28
|
oveq2d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o ( 𝐵 +o ∅ ) ) = ( 𝐴 ·o 𝐵 ) ) |
30 |
23 26 29
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o ( 𝐵 +o ∅ ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o ∅ ) ) ) |
31 |
|
oveq1 |
⊢ ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) +o 𝐴 ) = ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) ) |
32 |
|
oasuc |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 +o suc 𝑦 ) = suc ( 𝐵 +o 𝑦 ) ) |
33 |
32
|
3adant1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 +o suc 𝑦 ) = suc ( 𝐵 +o 𝑦 ) ) |
34 |
33
|
oveq2d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( 𝐴 ·o suc ( 𝐵 +o 𝑦 ) ) ) |
35 |
|
oacl |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 +o 𝑦 ) ∈ On ) |
36 |
|
omsuc |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 +o 𝑦 ) ∈ On ) → ( 𝐴 ·o suc ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) +o 𝐴 ) ) |
37 |
35 36
|
sylan2 |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) ) → ( 𝐴 ·o suc ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) +o 𝐴 ) ) |
38 |
37
|
3impb |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o suc ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) +o 𝐴 ) ) |
39 |
34 38
|
eqtrd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) +o 𝐴 ) ) |
40 |
|
omsuc |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) |
41 |
40
|
3adant2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) |
42 |
41
|
oveq2d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) |
43 |
|
omcl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o 𝑦 ) ∈ On ) |
44 |
|
oaass |
⊢ ( ( ( 𝐴 ·o 𝐵 ) ∈ On ∧ ( 𝐴 ·o 𝑦 ) ∈ On ∧ 𝐴 ∈ On ) → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) |
45 |
21 44
|
syl3an1 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ·o 𝑦 ) ∈ On ∧ 𝐴 ∈ On ) → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) |
46 |
43 45
|
syl3an2 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) ∧ 𝐴 ∈ On ) → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) |
47 |
46
|
3exp |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ∈ On → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) ) ) |
48 |
47
|
exp4b |
⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝐴 ∈ On → ( 𝑦 ∈ On → ( 𝐴 ∈ On → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) ) ) ) ) |
49 |
48
|
pm2.43a |
⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝑦 ∈ On → ( 𝐴 ∈ On → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) ) ) ) |
50 |
49
|
com4r |
⊢ ( 𝐴 ∈ On → ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝑦 ∈ On → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) ) ) ) |
51 |
50
|
pm2.43i |
⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝑦 ∈ On → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) ) ) |
52 |
51
|
3imp |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) |
53 |
42 52
|
eqtr4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) = ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) ) |
54 |
39 53
|
eqeq12d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ↔ ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) +o 𝐴 ) = ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) ) ) |
55 |
31 54
|
syl5ibr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ) ) |
56 |
55
|
3exp |
⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝑦 ∈ On → ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ) ) ) ) |
57 |
56
|
com3r |
⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ) ) ) ) |
58 |
57
|
impd |
⊢ ( 𝑦 ∈ On → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ) ) ) |
59 |
|
vex |
⊢ 𝑥 ∈ V |
60 |
|
limelon |
⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → 𝑥 ∈ On ) |
61 |
59 60
|
mpan |
⊢ ( Lim 𝑥 → 𝑥 ∈ On ) |
62 |
|
oacl |
⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐵 +o 𝑥 ) ∈ On ) |
63 |
|
om0r |
⊢ ( ( 𝐵 +o 𝑥 ) ∈ On → ( ∅ ·o ( 𝐵 +o 𝑥 ) ) = ∅ ) |
64 |
62 63
|
syl |
⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) → ( ∅ ·o ( 𝐵 +o 𝑥 ) ) = ∅ ) |
65 |
|
om0r |
⊢ ( 𝐵 ∈ On → ( ∅ ·o 𝐵 ) = ∅ ) |
66 |
|
om0r |
⊢ ( 𝑥 ∈ On → ( ∅ ·o 𝑥 ) = ∅ ) |
67 |
65 66
|
oveqan12d |
⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) → ( ( ∅ ·o 𝐵 ) +o ( ∅ ·o 𝑥 ) ) = ( ∅ +o ∅ ) ) |
68 |
|
0elon |
⊢ ∅ ∈ On |
69 |
|
oa0 |
⊢ ( ∅ ∈ On → ( ∅ +o ∅ ) = ∅ ) |
70 |
68 69
|
ax-mp |
⊢ ( ∅ +o ∅ ) = ∅ |
71 |
67 70
|
eqtr2di |
⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) → ∅ = ( ( ∅ ·o 𝐵 ) +o ( ∅ ·o 𝑥 ) ) ) |
72 |
64 71
|
eqtrd |
⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) → ( ∅ ·o ( 𝐵 +o 𝑥 ) ) = ( ( ∅ ·o 𝐵 ) +o ( ∅ ·o 𝑥 ) ) ) |
73 |
61 72
|
sylan2 |
⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → ( ∅ ·o ( 𝐵 +o 𝑥 ) ) = ( ( ∅ ·o 𝐵 ) +o ( ∅ ·o 𝑥 ) ) ) |
74 |
73
|
ancoms |
⊢ ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) → ( ∅ ·o ( 𝐵 +o 𝑥 ) ) = ( ( ∅ ·o 𝐵 ) +o ( ∅ ·o 𝑥 ) ) ) |
75 |
|
oveq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ∅ ·o ( 𝐵 +o 𝑥 ) ) ) |
76 |
|
oveq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ·o 𝐵 ) = ( ∅ ·o 𝐵 ) ) |
77 |
|
oveq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ·o 𝑥 ) = ( ∅ ·o 𝑥 ) ) |
78 |
76 77
|
oveq12d |
⊢ ( 𝐴 = ∅ → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) = ( ( ∅ ·o 𝐵 ) +o ( ∅ ·o 𝑥 ) ) ) |
79 |
75 78
|
eqeq12d |
⊢ ( 𝐴 = ∅ → ( ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ↔ ( ∅ ·o ( 𝐵 +o 𝑥 ) ) = ( ( ∅ ·o 𝐵 ) +o ( ∅ ·o 𝑥 ) ) ) ) |
80 |
74 79
|
syl5ibr |
⊢ ( 𝐴 = ∅ → ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ) ) |
81 |
80
|
expd |
⊢ ( 𝐴 = ∅ → ( Lim 𝑥 → ( 𝐵 ∈ On → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ) ) ) |
82 |
81
|
com3r |
⊢ ( 𝐵 ∈ On → ( 𝐴 = ∅ → ( Lim 𝑥 → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ) ) ) |
83 |
82
|
imp |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) → ( Lim 𝑥 → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ) ) |
84 |
83
|
a1dd |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) → ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ) ) ) |
85 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → 𝐵 ∈ On ) |
86 |
62
|
ancoms |
⊢ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 +o 𝑥 ) ∈ On ) |
87 |
|
onelon |
⊢ ( ( ( 𝐵 +o 𝑥 ) ∈ On ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → 𝑧 ∈ On ) |
88 |
86 87
|
sylan |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → 𝑧 ∈ On ) |
89 |
|
ontri1 |
⊢ ( ( 𝐵 ∈ On ∧ 𝑧 ∈ On ) → ( 𝐵 ⊆ 𝑧 ↔ ¬ 𝑧 ∈ 𝐵 ) ) |
90 |
|
oawordex |
⊢ ( ( 𝐵 ∈ On ∧ 𝑧 ∈ On ) → ( 𝐵 ⊆ 𝑧 ↔ ∃ 𝑣 ∈ On ( 𝐵 +o 𝑣 ) = 𝑧 ) ) |
91 |
89 90
|
bitr3d |
⊢ ( ( 𝐵 ∈ On ∧ 𝑧 ∈ On ) → ( ¬ 𝑧 ∈ 𝐵 ↔ ∃ 𝑣 ∈ On ( 𝐵 +o 𝑣 ) = 𝑧 ) ) |
92 |
85 88 91
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ( ¬ 𝑧 ∈ 𝐵 ↔ ∃ 𝑣 ∈ On ( 𝐵 +o 𝑣 ) = 𝑧 ) ) |
93 |
|
oaord |
⊢ ( ( 𝑣 ∈ On ∧ 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑣 ∈ 𝑥 ↔ ( 𝐵 +o 𝑣 ) ∈ ( 𝐵 +o 𝑥 ) ) ) |
94 |
93
|
3expb |
⊢ ( ( 𝑣 ∈ On ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝑣 ∈ 𝑥 ↔ ( 𝐵 +o 𝑣 ) ∈ ( 𝐵 +o 𝑥 ) ) ) |
95 |
|
eleq1 |
⊢ ( ( 𝐵 +o 𝑣 ) = 𝑧 → ( ( 𝐵 +o 𝑣 ) ∈ ( 𝐵 +o 𝑥 ) ↔ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) ) |
96 |
94 95
|
sylan9bb |
⊢ ( ( ( 𝑣 ∈ On ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) → ( 𝑣 ∈ 𝑥 ↔ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) ) |
97 |
|
iba |
⊢ ( ( 𝐵 +o 𝑣 ) = 𝑧 → ( 𝑣 ∈ 𝑥 ↔ ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) |
98 |
97
|
adantl |
⊢ ( ( ( 𝑣 ∈ On ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) → ( 𝑣 ∈ 𝑥 ↔ ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) |
99 |
96 98
|
bitr3d |
⊢ ( ( ( 𝑣 ∈ On ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) → ( 𝑧 ∈ ( 𝐵 +o 𝑥 ) ↔ ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) |
100 |
99
|
an32s |
⊢ ( ( ( 𝑣 ∈ On ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝑧 ∈ ( 𝐵 +o 𝑥 ) ↔ ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) |
101 |
100
|
biimpcd |
⊢ ( 𝑧 ∈ ( 𝐵 +o 𝑥 ) → ( ( ( 𝑣 ∈ On ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) |
102 |
101
|
exp4c |
⊢ ( 𝑧 ∈ ( 𝐵 +o 𝑥 ) → ( 𝑣 ∈ On → ( ( 𝐵 +o 𝑣 ) = 𝑧 → ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) ) ) |
103 |
102
|
com4r |
⊢ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑧 ∈ ( 𝐵 +o 𝑥 ) → ( 𝑣 ∈ On → ( ( 𝐵 +o 𝑣 ) = 𝑧 → ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) ) ) |
104 |
103
|
imp |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ( 𝑣 ∈ On → ( ( 𝐵 +o 𝑣 ) = 𝑧 → ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) ) |
105 |
104
|
reximdvai |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ( ∃ 𝑣 ∈ On ( 𝐵 +o 𝑣 ) = 𝑧 → ∃ 𝑣 ∈ On ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) |
106 |
92 105
|
sylbid |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ( ¬ 𝑧 ∈ 𝐵 → ∃ 𝑣 ∈ On ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) |
107 |
106
|
orrd |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ( 𝑧 ∈ 𝐵 ∨ ∃ 𝑣 ∈ On ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) |
108 |
61 107
|
sylanl1 |
⊢ ( ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ( 𝑧 ∈ 𝐵 ∨ ∃ 𝑣 ∈ On ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) |
109 |
108
|
adantlrl |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ( 𝑧 ∈ 𝐵 ∨ ∃ 𝑣 ∈ On ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) |
110 |
109
|
adantlr |
⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ( 𝑧 ∈ 𝐵 ∨ ∃ 𝑣 ∈ On ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) |
111 |
|
0ellim |
⊢ ( Lim 𝑥 → ∅ ∈ 𝑥 ) |
112 |
|
om00el |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( ∅ ∈ ( 𝐴 ·o 𝑥 ) ↔ ( ∅ ∈ 𝐴 ∧ ∅ ∈ 𝑥 ) ) ) |
113 |
112
|
biimprd |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( ( ∅ ∈ 𝐴 ∧ ∅ ∈ 𝑥 ) → ∅ ∈ ( 𝐴 ·o 𝑥 ) ) ) |
114 |
111 113
|
sylan2i |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( ( ∅ ∈ 𝐴 ∧ Lim 𝑥 ) → ∅ ∈ ( 𝐴 ·o 𝑥 ) ) ) |
115 |
61 114
|
sylan2 |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝑥 ) → ( ( ∅ ∈ 𝐴 ∧ Lim 𝑥 ) → ∅ ∈ ( 𝐴 ·o 𝑥 ) ) ) |
116 |
115
|
exp4b |
⊢ ( 𝐴 ∈ On → ( Lim 𝑥 → ( ∅ ∈ 𝐴 → ( Lim 𝑥 → ∅ ∈ ( 𝐴 ·o 𝑥 ) ) ) ) ) |
117 |
116
|
com4r |
⊢ ( Lim 𝑥 → ( 𝐴 ∈ On → ( Lim 𝑥 → ( ∅ ∈ 𝐴 → ∅ ∈ ( 𝐴 ·o 𝑥 ) ) ) ) ) |
118 |
117
|
pm2.43a |
⊢ ( Lim 𝑥 → ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 → ∅ ∈ ( 𝐴 ·o 𝑥 ) ) ) ) |
119 |
118
|
imp31 |
⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ·o 𝑥 ) ) |
120 |
119
|
a1d |
⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝑧 ∈ 𝐵 → ∅ ∈ ( 𝐴 ·o 𝑥 ) ) ) |
121 |
120
|
adantlrr |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝑧 ∈ 𝐵 → ∅ ∈ ( 𝐴 ·o 𝑥 ) ) ) |
122 |
|
omordi |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝑧 ∈ 𝐵 → ( 𝐴 ·o 𝑧 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) |
123 |
122
|
ancom1s |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝑧 ∈ 𝐵 → ( 𝐴 ·o 𝑧 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) |
124 |
|
onelss |
⊢ ( ( 𝐴 ·o 𝐵 ) ∈ On → ( ( 𝐴 ·o 𝑧 ) ∈ ( 𝐴 ·o 𝐵 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o 𝐵 ) ) ) |
125 |
22
|
sseq2d |
⊢ ( ( 𝐴 ·o 𝐵 ) ∈ On → ( ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ∅ ) ↔ ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o 𝐵 ) ) ) |
126 |
124 125
|
sylibrd |
⊢ ( ( 𝐴 ·o 𝐵 ) ∈ On → ( ( 𝐴 ·o 𝑧 ) ∈ ( 𝐴 ·o 𝐵 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ∅ ) ) ) |
127 |
21 126
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 𝑧 ) ∈ ( 𝐴 ·o 𝐵 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ∅ ) ) ) |
128 |
127
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝑧 ) ∈ ( 𝐴 ·o 𝐵 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ∅ ) ) ) |
129 |
123 128
|
syld |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝑧 ∈ 𝐵 → ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ∅ ) ) ) |
130 |
129
|
adantll |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝑧 ∈ 𝐵 → ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ∅ ) ) ) |
131 |
121 130
|
jcad |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝑧 ∈ 𝐵 → ( ∅ ∈ ( 𝐴 ·o 𝑥 ) ∧ ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ∅ ) ) ) ) |
132 |
|
oveq2 |
⊢ ( 𝑤 = ∅ → ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) = ( ( 𝐴 ·o 𝐵 ) +o ∅ ) ) |
133 |
132
|
sseq2d |
⊢ ( 𝑤 = ∅ → ( ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ↔ ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ∅ ) ) ) |
134 |
133
|
rspcev |
⊢ ( ( ∅ ∈ ( 𝐴 ·o 𝑥 ) ∧ ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ∅ ) ) → ∃ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) |
135 |
131 134
|
syl6 |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝑧 ∈ 𝐵 → ∃ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) ) |
136 |
135
|
adantrr |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ( 𝑧 ∈ 𝐵 → ∃ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) ) |
137 |
|
omordi |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝑣 ∈ 𝑥 → ( 𝐴 ·o 𝑣 ) ∈ ( 𝐴 ·o 𝑥 ) ) ) |
138 |
61 137
|
sylanl1 |
⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝑣 ∈ 𝑥 → ( 𝐴 ·o 𝑣 ) ∈ ( 𝐴 ·o 𝑥 ) ) ) |
139 |
138
|
adantrd |
⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) → ( 𝐴 ·o 𝑣 ) ∈ ( 𝐴 ·o 𝑥 ) ) ) |
140 |
139
|
adantrr |
⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ( ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) → ( 𝐴 ·o 𝑣 ) ∈ ( 𝐴 ·o 𝑥 ) ) ) |
141 |
|
oveq2 |
⊢ ( 𝑦 = 𝑣 → ( 𝐵 +o 𝑦 ) = ( 𝐵 +o 𝑣 ) ) |
142 |
141
|
oveq2d |
⊢ ( 𝑦 = 𝑣 → ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ) |
143 |
|
oveq2 |
⊢ ( 𝑦 = 𝑣 → ( 𝐴 ·o 𝑦 ) = ( 𝐴 ·o 𝑣 ) ) |
144 |
143
|
oveq2d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) |
145 |
142 144
|
eqeq12d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ↔ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) |
146 |
145
|
rspccv |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝑣 ∈ 𝑥 → ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) |
147 |
|
oveq2 |
⊢ ( ( 𝐵 +o 𝑣 ) = 𝑧 → ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) = ( 𝐴 ·o 𝑧 ) ) |
148 |
|
eqeq1 |
⊢ ( ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) → ( ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) = ( 𝐴 ·o 𝑧 ) ↔ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) = ( 𝐴 ·o 𝑧 ) ) ) |
149 |
147 148
|
syl5ib |
⊢ ( ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) → ( ( 𝐵 +o 𝑣 ) = 𝑧 → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) = ( 𝐴 ·o 𝑧 ) ) ) |
150 |
|
eqimss2 |
⊢ ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) = ( 𝐴 ·o 𝑧 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) |
151 |
149 150
|
syl6 |
⊢ ( ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) → ( ( 𝐵 +o 𝑣 ) = 𝑧 → ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) |
152 |
151
|
imim2i |
⊢ ( ( 𝑣 ∈ 𝑥 → ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) → ( 𝑣 ∈ 𝑥 → ( ( 𝐵 +o 𝑣 ) = 𝑧 → ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) ) |
153 |
152
|
impd |
⊢ ( ( 𝑣 ∈ 𝑥 → ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) → ( ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) |
154 |
146 153
|
syl |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) |
155 |
154
|
ad2antll |
⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ( ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) |
156 |
140 155
|
jcad |
⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ( ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) → ( ( 𝐴 ·o 𝑣 ) ∈ ( 𝐴 ·o 𝑥 ) ∧ ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) ) |
157 |
|
oveq2 |
⊢ ( 𝑤 = ( 𝐴 ·o 𝑣 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) |
158 |
157
|
sseq2d |
⊢ ( 𝑤 = ( 𝐴 ·o 𝑣 ) → ( ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ↔ ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) |
159 |
158
|
rspcev |
⊢ ( ( ( 𝐴 ·o 𝑣 ) ∈ ( 𝐴 ·o 𝑥 ) ∧ ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) → ∃ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) |
160 |
156 159
|
syl6 |
⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ( ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) → ∃ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) ) |
161 |
160
|
rexlimdvw |
⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ( ∃ 𝑣 ∈ On ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) → ∃ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) ) |
162 |
161
|
adantlrr |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ( ∃ 𝑣 ∈ On ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) → ∃ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) ) |
163 |
136 162
|
jaod |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ( ( 𝑧 ∈ 𝐵 ∨ ∃ 𝑣 ∈ On ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) → ∃ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) ) |
164 |
163
|
adantr |
⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ( ( 𝑧 ∈ 𝐵 ∨ ∃ 𝑣 ∈ On ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) → ∃ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) ) |
165 |
110 164
|
mpd |
⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ∃ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) |
166 |
165
|
ralrimiva |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ∀ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ∃ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) |
167 |
|
iunss2 |
⊢ ( ∀ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ∃ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) → ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ∪ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) |
168 |
166 167
|
syl |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ∪ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) |
169 |
|
omordlim |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ) → ∃ 𝑣 ∈ 𝑥 𝑤 ∈ ( 𝐴 ·o 𝑣 ) ) |
170 |
169
|
ex |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑥 ) → ∃ 𝑣 ∈ 𝑥 𝑤 ∈ ( 𝐴 ·o 𝑣 ) ) ) |
171 |
59 170
|
mpanr1 |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝑥 ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑥 ) → ∃ 𝑣 ∈ 𝑥 𝑤 ∈ ( 𝐴 ·o 𝑣 ) ) ) |
172 |
171
|
ancoms |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑥 ) → ∃ 𝑣 ∈ 𝑥 𝑤 ∈ ( 𝐴 ·o 𝑣 ) ) ) |
173 |
172
|
imp |
⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) ∧ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ) → ∃ 𝑣 ∈ 𝑥 𝑤 ∈ ( 𝐴 ·o 𝑣 ) ) |
174 |
173
|
adantlrr |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ) → ∃ 𝑣 ∈ 𝑥 𝑤 ∈ ( 𝐴 ·o 𝑣 ) ) |
175 |
174
|
adantlr |
⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ∧ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ) → ∃ 𝑣 ∈ 𝑥 𝑤 ∈ ( 𝐴 ·o 𝑣 ) ) |
176 |
|
oaordi |
⊢ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑣 ∈ 𝑥 → ( 𝐵 +o 𝑣 ) ∈ ( 𝐵 +o 𝑥 ) ) ) |
177 |
61 176
|
sylan |
⊢ ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) → ( 𝑣 ∈ 𝑥 → ( 𝐵 +o 𝑣 ) ∈ ( 𝐵 +o 𝑥 ) ) ) |
178 |
177
|
imp |
⊢ ( ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) ∧ 𝑣 ∈ 𝑥 ) → ( 𝐵 +o 𝑣 ) ∈ ( 𝐵 +o 𝑥 ) ) |
179 |
178
|
adantlrl |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ 𝑣 ∈ 𝑥 ) → ( 𝐵 +o 𝑣 ) ∈ ( 𝐵 +o 𝑥 ) ) |
180 |
179
|
a1d |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ 𝑣 ∈ 𝑥 ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑣 ) → ( 𝐵 +o 𝑣 ) ∈ ( 𝐵 +o 𝑥 ) ) ) |
181 |
180
|
adantlr |
⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑥 ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑣 ) → ( 𝐵 +o 𝑣 ) ∈ ( 𝐵 +o 𝑥 ) ) ) |
182 |
|
limord |
⊢ ( Lim 𝑥 → Ord 𝑥 ) |
183 |
|
ordelon |
⊢ ( ( Ord 𝑥 ∧ 𝑣 ∈ 𝑥 ) → 𝑣 ∈ On ) |
184 |
182 183
|
sylan |
⊢ ( ( Lim 𝑥 ∧ 𝑣 ∈ 𝑥 ) → 𝑣 ∈ On ) |
185 |
|
omcl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑣 ∈ On ) → ( 𝐴 ·o 𝑣 ) ∈ On ) |
186 |
185
|
ancoms |
⊢ ( ( 𝑣 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐴 ·o 𝑣 ) ∈ On ) |
187 |
186
|
adantrr |
⊢ ( ( 𝑣 ∈ On ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝐴 ·o 𝑣 ) ∈ On ) |
188 |
21
|
adantl |
⊢ ( ( 𝑣 ∈ On ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝐴 ·o 𝐵 ) ∈ On ) |
189 |
|
oaordi |
⊢ ( ( ( 𝐴 ·o 𝑣 ) ∈ On ∧ ( 𝐴 ·o 𝐵 ) ∈ On ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑣 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) |
190 |
187 188 189
|
syl2anc |
⊢ ( ( 𝑣 ∈ On ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑣 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) |
191 |
184 190
|
sylan |
⊢ ( ( ( Lim 𝑥 ∧ 𝑣 ∈ 𝑥 ) ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑣 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) |
192 |
191
|
an32s |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ 𝑣 ∈ 𝑥 ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑣 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) |
193 |
192
|
adantlr |
⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑥 ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑣 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) |
194 |
145
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ∧ 𝑣 ∈ 𝑥 ) → ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) |
195 |
194
|
eleq2d |
⊢ ( ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ∧ 𝑣 ∈ 𝑥 ) → ( ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ∈ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ↔ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) |
196 |
195
|
adantll |
⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑥 ) → ( ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ∈ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ↔ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) |
197 |
193 196
|
sylibrd |
⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑥 ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑣 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ∈ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ) ) |
198 |
|
oacl |
⊢ ( ( 𝐵 ∈ On ∧ 𝑣 ∈ On ) → ( 𝐵 +o 𝑣 ) ∈ On ) |
199 |
198
|
ancoms |
⊢ ( ( 𝑣 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 +o 𝑣 ) ∈ On ) |
200 |
|
omcl |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 +o 𝑣 ) ∈ On ) → ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ∈ On ) |
201 |
199 200
|
sylan2 |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑣 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ∈ On ) |
202 |
201
|
an12s |
⊢ ( ( 𝑣 ∈ On ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ∈ On ) |
203 |
184 202
|
sylan |
⊢ ( ( ( Lim 𝑥 ∧ 𝑣 ∈ 𝑥 ) ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ∈ On ) |
204 |
203
|
an32s |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ 𝑣 ∈ 𝑥 ) → ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ∈ On ) |
205 |
|
onelss |
⊢ ( ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ∈ On → ( ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ∈ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) → ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ) ) |
206 |
204 205
|
syl |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ 𝑣 ∈ 𝑥 ) → ( ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ∈ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) → ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ) ) |
207 |
206
|
adantlr |
⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑥 ) → ( ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ∈ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) → ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ) ) |
208 |
197 207
|
syld |
⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑥 ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑣 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ) ) |
209 |
181 208
|
jcad |
⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑥 ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑣 ) → ( ( 𝐵 +o 𝑣 ) ∈ ( 𝐵 +o 𝑥 ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ) ) ) |
210 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝐵 +o 𝑣 ) → ( 𝐴 ·o 𝑧 ) = ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ) |
211 |
210
|
sseq2d |
⊢ ( 𝑧 = ( 𝐵 +o 𝑣 ) → ( ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o 𝑧 ) ↔ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ) ) |
212 |
211
|
rspcev |
⊢ ( ( ( 𝐵 +o 𝑣 ) ∈ ( 𝐵 +o 𝑥 ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ) → ∃ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o 𝑧 ) ) |
213 |
209 212
|
syl6 |
⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑥 ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑣 ) → ∃ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o 𝑧 ) ) ) |
214 |
213
|
rexlimdva |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) → ( ∃ 𝑣 ∈ 𝑥 𝑤 ∈ ( 𝐴 ·o 𝑣 ) → ∃ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o 𝑧 ) ) ) |
215 |
214
|
adantr |
⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ∧ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ) → ( ∃ 𝑣 ∈ 𝑥 𝑤 ∈ ( 𝐴 ·o 𝑣 ) → ∃ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o 𝑧 ) ) ) |
216 |
175 215
|
mpd |
⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ∧ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ) → ∃ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o 𝑧 ) ) |
217 |
216
|
ralrimiva |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) → ∀ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ∃ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o 𝑧 ) ) |
218 |
|
iunss2 |
⊢ ( ∀ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ∃ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o 𝑧 ) → ∪ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
219 |
217 218
|
syl |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) → ∪ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
220 |
219
|
adantrl |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ∪ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
221 |
168 220
|
eqssd |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 ·o 𝑧 ) = ∪ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) |
222 |
|
oalimcl |
⊢ ( ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → Lim ( 𝐵 +o 𝑥 ) ) |
223 |
59 222
|
mpanr1 |
⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → Lim ( 𝐵 +o 𝑥 ) ) |
224 |
223
|
ancoms |
⊢ ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) → Lim ( 𝐵 +o 𝑥 ) ) |
225 |
224
|
anim2i |
⊢ ( ( 𝐴 ∈ On ∧ ( Lim 𝑥 ∧ 𝐵 ∈ On ) ) → ( 𝐴 ∈ On ∧ Lim ( 𝐵 +o 𝑥 ) ) ) |
226 |
225
|
an12s |
⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝐴 ∈ On ∧ Lim ( 𝐵 +o 𝑥 ) ) ) |
227 |
|
ovex |
⊢ ( 𝐵 +o 𝑥 ) ∈ V |
228 |
|
omlim |
⊢ ( ( 𝐴 ∈ On ∧ ( ( 𝐵 +o 𝑥 ) ∈ V ∧ Lim ( 𝐵 +o 𝑥 ) ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
229 |
227 228
|
mpanr1 |
⊢ ( ( 𝐴 ∈ On ∧ Lim ( 𝐵 +o 𝑥 ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
230 |
226 229
|
syl |
⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
231 |
230
|
adantr |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
232 |
21
|
ad2antlr |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ·o 𝐵 ) ∈ On ) |
233 |
59
|
jctl |
⊢ ( Lim 𝑥 → ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) |
234 |
233
|
anim1ci |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ) |
235 |
|
omlimcl |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ∅ ∈ 𝐴 ) → Lim ( 𝐴 ·o 𝑥 ) ) |
236 |
234 235
|
sylan |
⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → Lim ( 𝐴 ·o 𝑥 ) ) |
237 |
236
|
adantlrr |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∅ ∈ 𝐴 ) → Lim ( 𝐴 ·o 𝑥 ) ) |
238 |
|
ovex |
⊢ ( 𝐴 ·o 𝑥 ) ∈ V |
239 |
237 238
|
jctil |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝑥 ) ∈ V ∧ Lim ( 𝐴 ·o 𝑥 ) ) ) |
240 |
|
oalim |
⊢ ( ( ( 𝐴 ·o 𝐵 ) ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) ∈ V ∧ Lim ( 𝐴 ·o 𝑥 ) ) ) → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) = ∪ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) |
241 |
232 239 240
|
syl2anc |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) = ∪ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) |
242 |
241
|
adantrr |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) = ∪ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) |
243 |
221 231 242
|
3eqtr4d |
⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ) |
244 |
243
|
exp43 |
⊢ ( Lim 𝑥 → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ) ) ) ) |
245 |
244
|
com3l |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ 𝐴 → ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ) ) ) ) |
246 |
245
|
imp |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ) ) ) |
247 |
84 246
|
oe0lem |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ) ) ) |
248 |
247
|
com12 |
⊢ ( Lim 𝑥 → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ) ) ) |
249 |
5 10 15 20 30 58 248
|
tfinds3 |
⊢ ( 𝐶 ∈ On → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) ) |
250 |
249
|
expdcom |
⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝐶 ∈ On → ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) ) ) |
251 |
250
|
3imp |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) |