| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( 𝑥  =  ∅  →  ( 𝐵  +o  𝑥 )  =  ( 𝐵  +o  ∅ ) ) | 
						
							| 2 | 1 | oveq2d | ⊢ ( 𝑥  =  ∅  →  ( 𝐴  ·o  ( 𝐵  +o  𝑥 ) )  =  ( 𝐴  ·o  ( 𝐵  +o  ∅ ) ) ) | 
						
							| 3 |  | oveq2 | ⊢ ( 𝑥  =  ∅  →  ( 𝐴  ·o  𝑥 )  =  ( 𝐴  ·o  ∅ ) ) | 
						
							| 4 | 3 | oveq2d | ⊢ ( 𝑥  =  ∅  →  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑥 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  ∅ ) ) ) | 
						
							| 5 | 2 4 | eqeq12d | ⊢ ( 𝑥  =  ∅  →  ( ( 𝐴  ·o  ( 𝐵  +o  𝑥 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑥 ) )  ↔  ( 𝐴  ·o  ( 𝐵  +o  ∅ ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  ∅ ) ) ) ) | 
						
							| 6 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐵  +o  𝑥 )  =  ( 𝐵  +o  𝑦 ) ) | 
						
							| 7 | 6 | oveq2d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  ·o  ( 𝐵  +o  𝑥 ) )  =  ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) ) ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  ·o  𝑥 )  =  ( 𝐴  ·o  𝑦 ) ) | 
						
							| 9 | 8 | oveq2d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑥 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) ) | 
						
							| 10 | 7 9 | eqeq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐴  ·o  ( 𝐵  +o  𝑥 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑥 ) )  ↔  ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) ) ) | 
						
							| 11 |  | oveq2 | ⊢ ( 𝑥  =  suc  𝑦  →  ( 𝐵  +o  𝑥 )  =  ( 𝐵  +o  suc  𝑦 ) ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( 𝑥  =  suc  𝑦  →  ( 𝐴  ·o  ( 𝐵  +o  𝑥 ) )  =  ( 𝐴  ·o  ( 𝐵  +o  suc  𝑦 ) ) ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑥  =  suc  𝑦  →  ( 𝐴  ·o  𝑥 )  =  ( 𝐴  ·o  suc  𝑦 ) ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( 𝑥  =  suc  𝑦  →  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑥 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  suc  𝑦 ) ) ) | 
						
							| 15 | 12 14 | eqeq12d | ⊢ ( 𝑥  =  suc  𝑦  →  ( ( 𝐴  ·o  ( 𝐵  +o  𝑥 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑥 ) )  ↔  ( 𝐴  ·o  ( 𝐵  +o  suc  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  suc  𝑦 ) ) ) ) | 
						
							| 16 |  | oveq2 | ⊢ ( 𝑥  =  𝐶  →  ( 𝐵  +o  𝑥 )  =  ( 𝐵  +o  𝐶 ) ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( 𝑥  =  𝐶  →  ( 𝐴  ·o  ( 𝐵  +o  𝑥 ) )  =  ( 𝐴  ·o  ( 𝐵  +o  𝐶 ) ) ) | 
						
							| 18 |  | oveq2 | ⊢ ( 𝑥  =  𝐶  →  ( 𝐴  ·o  𝑥 )  =  ( 𝐴  ·o  𝐶 ) ) | 
						
							| 19 | 18 | oveq2d | ⊢ ( 𝑥  =  𝐶  →  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑥 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝐶 ) ) ) | 
						
							| 20 | 17 19 | eqeq12d | ⊢ ( 𝑥  =  𝐶  →  ( ( 𝐴  ·o  ( 𝐵  +o  𝑥 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑥 ) )  ↔  ( 𝐴  ·o  ( 𝐵  +o  𝐶 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝐶 ) ) ) ) | 
						
							| 21 |  | omcl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ·o  𝐵 )  ∈  On ) | 
						
							| 22 |  | oa0 | ⊢ ( ( 𝐴  ·o  𝐵 )  ∈  On  →  ( ( 𝐴  ·o  𝐵 )  +o  ∅ )  =  ( 𝐴  ·o  𝐵 ) ) | 
						
							| 23 | 21 22 | syl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  ·o  𝐵 )  +o  ∅ )  =  ( 𝐴  ·o  𝐵 ) ) | 
						
							| 24 |  | om0 | ⊢ ( 𝐴  ∈  On  →  ( 𝐴  ·o  ∅ )  =  ∅ ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ·o  ∅ )  =  ∅ ) | 
						
							| 26 | 25 | oveq2d | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  ∅ ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ∅ ) ) | 
						
							| 27 |  | oa0 | ⊢ ( 𝐵  ∈  On  →  ( 𝐵  +o  ∅ )  =  𝐵 ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐵  +o  ∅ )  =  𝐵 ) | 
						
							| 29 | 28 | oveq2d | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ·o  ( 𝐵  +o  ∅ ) )  =  ( 𝐴  ·o  𝐵 ) ) | 
						
							| 30 | 23 26 29 | 3eqtr4rd | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ·o  ( 𝐵  +o  ∅ ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  ∅ ) ) ) | 
						
							| 31 |  | oveq1 | ⊢ ( ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  →  ( ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  +o  𝐴 )  =  ( ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  +o  𝐴 ) ) | 
						
							| 32 |  | oasuc | ⊢ ( ( 𝐵  ∈  On  ∧  𝑦  ∈  On )  →  ( 𝐵  +o  suc  𝑦 )  =  suc  ( 𝐵  +o  𝑦 ) ) | 
						
							| 33 | 32 | 3adant1 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝑦  ∈  On )  →  ( 𝐵  +o  suc  𝑦 )  =  suc  ( 𝐵  +o  𝑦 ) ) | 
						
							| 34 | 33 | oveq2d | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝑦  ∈  On )  →  ( 𝐴  ·o  ( 𝐵  +o  suc  𝑦 ) )  =  ( 𝐴  ·o  suc  ( 𝐵  +o  𝑦 ) ) ) | 
						
							| 35 |  | oacl | ⊢ ( ( 𝐵  ∈  On  ∧  𝑦  ∈  On )  →  ( 𝐵  +o  𝑦 )  ∈  On ) | 
						
							| 36 |  | omsuc | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐵  +o  𝑦 )  ∈  On )  →  ( 𝐴  ·o  suc  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  +o  𝐴 ) ) | 
						
							| 37 | 35 36 | sylan2 | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  On  ∧  𝑦  ∈  On ) )  →  ( 𝐴  ·o  suc  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  +o  𝐴 ) ) | 
						
							| 38 | 37 | 3impb | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝑦  ∈  On )  →  ( 𝐴  ·o  suc  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  +o  𝐴 ) ) | 
						
							| 39 | 34 38 | eqtrd | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝑦  ∈  On )  →  ( 𝐴  ·o  ( 𝐵  +o  suc  𝑦 ) )  =  ( ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  +o  𝐴 ) ) | 
						
							| 40 |  | omsuc | ⊢ ( ( 𝐴  ∈  On  ∧  𝑦  ∈  On )  →  ( 𝐴  ·o  suc  𝑦 )  =  ( ( 𝐴  ·o  𝑦 )  +o  𝐴 ) ) | 
						
							| 41 | 40 | 3adant2 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝑦  ∈  On )  →  ( 𝐴  ·o  suc  𝑦 )  =  ( ( 𝐴  ·o  𝑦 )  +o  𝐴 ) ) | 
						
							| 42 | 41 | oveq2d | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝑦  ∈  On )  →  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  suc  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( ( 𝐴  ·o  𝑦 )  +o  𝐴 ) ) ) | 
						
							| 43 |  | omcl | ⊢ ( ( 𝐴  ∈  On  ∧  𝑦  ∈  On )  →  ( 𝐴  ·o  𝑦 )  ∈  On ) | 
						
							| 44 |  | oaass | ⊢ ( ( ( 𝐴  ·o  𝐵 )  ∈  On  ∧  ( 𝐴  ·o  𝑦 )  ∈  On  ∧  𝐴  ∈  On )  →  ( ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  +o  𝐴 )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( ( 𝐴  ·o  𝑦 )  +o  𝐴 ) ) ) | 
						
							| 45 | 21 44 | syl3an1 | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝐴  ·o  𝑦 )  ∈  On  ∧  𝐴  ∈  On )  →  ( ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  +o  𝐴 )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( ( 𝐴  ·o  𝑦 )  +o  𝐴 ) ) ) | 
						
							| 46 | 43 45 | syl3an2 | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝐴  ∈  On  ∧  𝑦  ∈  On )  ∧  𝐴  ∈  On )  →  ( ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  +o  𝐴 )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( ( 𝐴  ·o  𝑦 )  +o  𝐴 ) ) ) | 
						
							| 47 | 46 | 3exp | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  ∈  On  ∧  𝑦  ∈  On )  →  ( 𝐴  ∈  On  →  ( ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  +o  𝐴 )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( ( 𝐴  ·o  𝑦 )  +o  𝐴 ) ) ) ) ) | 
						
							| 48 | 47 | exp4b | ⊢ ( 𝐴  ∈  On  →  ( 𝐵  ∈  On  →  ( 𝐴  ∈  On  →  ( 𝑦  ∈  On  →  ( 𝐴  ∈  On  →  ( ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  +o  𝐴 )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( ( 𝐴  ·o  𝑦 )  +o  𝐴 ) ) ) ) ) ) ) | 
						
							| 49 | 48 | pm2.43a | ⊢ ( 𝐴  ∈  On  →  ( 𝐵  ∈  On  →  ( 𝑦  ∈  On  →  ( 𝐴  ∈  On  →  ( ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  +o  𝐴 )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( ( 𝐴  ·o  𝑦 )  +o  𝐴 ) ) ) ) ) ) | 
						
							| 50 | 49 | com4r | ⊢ ( 𝐴  ∈  On  →  ( 𝐴  ∈  On  →  ( 𝐵  ∈  On  →  ( 𝑦  ∈  On  →  ( ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  +o  𝐴 )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( ( 𝐴  ·o  𝑦 )  +o  𝐴 ) ) ) ) ) ) | 
						
							| 51 | 50 | pm2.43i | ⊢ ( 𝐴  ∈  On  →  ( 𝐵  ∈  On  →  ( 𝑦  ∈  On  →  ( ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  +o  𝐴 )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( ( 𝐴  ·o  𝑦 )  +o  𝐴 ) ) ) ) ) | 
						
							| 52 | 51 | 3imp | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝑦  ∈  On )  →  ( ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  +o  𝐴 )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( ( 𝐴  ·o  𝑦 )  +o  𝐴 ) ) ) | 
						
							| 53 | 42 52 | eqtr4d | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝑦  ∈  On )  →  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  suc  𝑦 ) )  =  ( ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  +o  𝐴 ) ) | 
						
							| 54 | 39 53 | eqeq12d | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝑦  ∈  On )  →  ( ( 𝐴  ·o  ( 𝐵  +o  suc  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  suc  𝑦 ) )  ↔  ( ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  +o  𝐴 )  =  ( ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  +o  𝐴 ) ) ) | 
						
							| 55 | 31 54 | imbitrrid | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝑦  ∈  On )  →  ( ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  →  ( 𝐴  ·o  ( 𝐵  +o  suc  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  suc  𝑦 ) ) ) ) | 
						
							| 56 | 55 | 3exp | ⊢ ( 𝐴  ∈  On  →  ( 𝐵  ∈  On  →  ( 𝑦  ∈  On  →  ( ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  →  ( 𝐴  ·o  ( 𝐵  +o  suc  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  suc  𝑦 ) ) ) ) ) ) | 
						
							| 57 | 56 | com3r | ⊢ ( 𝑦  ∈  On  →  ( 𝐴  ∈  On  →  ( 𝐵  ∈  On  →  ( ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  →  ( 𝐴  ·o  ( 𝐵  +o  suc  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  suc  𝑦 ) ) ) ) ) ) | 
						
							| 58 | 57 | impd | ⊢ ( 𝑦  ∈  On  →  ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  →  ( 𝐴  ·o  ( 𝐵  +o  suc  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  suc  𝑦 ) ) ) ) ) | 
						
							| 59 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 60 |  | limelon | ⊢ ( ( 𝑥  ∈  V  ∧  Lim  𝑥 )  →  𝑥  ∈  On ) | 
						
							| 61 | 59 60 | mpan | ⊢ ( Lim  𝑥  →  𝑥  ∈  On ) | 
						
							| 62 |  | oacl | ⊢ ( ( 𝐵  ∈  On  ∧  𝑥  ∈  On )  →  ( 𝐵  +o  𝑥 )  ∈  On ) | 
						
							| 63 |  | om0r | ⊢ ( ( 𝐵  +o  𝑥 )  ∈  On  →  ( ∅  ·o  ( 𝐵  +o  𝑥 ) )  =  ∅ ) | 
						
							| 64 | 62 63 | syl | ⊢ ( ( 𝐵  ∈  On  ∧  𝑥  ∈  On )  →  ( ∅  ·o  ( 𝐵  +o  𝑥 ) )  =  ∅ ) | 
						
							| 65 |  | om0r | ⊢ ( 𝐵  ∈  On  →  ( ∅  ·o  𝐵 )  =  ∅ ) | 
						
							| 66 |  | om0r | ⊢ ( 𝑥  ∈  On  →  ( ∅  ·o  𝑥 )  =  ∅ ) | 
						
							| 67 | 65 66 | oveqan12d | ⊢ ( ( 𝐵  ∈  On  ∧  𝑥  ∈  On )  →  ( ( ∅  ·o  𝐵 )  +o  ( ∅  ·o  𝑥 ) )  =  ( ∅  +o  ∅ ) ) | 
						
							| 68 |  | 0elon | ⊢ ∅  ∈  On | 
						
							| 69 |  | oa0 | ⊢ ( ∅  ∈  On  →  ( ∅  +o  ∅ )  =  ∅ ) | 
						
							| 70 | 68 69 | ax-mp | ⊢ ( ∅  +o  ∅ )  =  ∅ | 
						
							| 71 | 67 70 | eqtr2di | ⊢ ( ( 𝐵  ∈  On  ∧  𝑥  ∈  On )  →  ∅  =  ( ( ∅  ·o  𝐵 )  +o  ( ∅  ·o  𝑥 ) ) ) | 
						
							| 72 | 64 71 | eqtrd | ⊢ ( ( 𝐵  ∈  On  ∧  𝑥  ∈  On )  →  ( ∅  ·o  ( 𝐵  +o  𝑥 ) )  =  ( ( ∅  ·o  𝐵 )  +o  ( ∅  ·o  𝑥 ) ) ) | 
						
							| 73 | 61 72 | sylan2 | ⊢ ( ( 𝐵  ∈  On  ∧  Lim  𝑥 )  →  ( ∅  ·o  ( 𝐵  +o  𝑥 ) )  =  ( ( ∅  ·o  𝐵 )  +o  ( ∅  ·o  𝑥 ) ) ) | 
						
							| 74 | 73 | ancoms | ⊢ ( ( Lim  𝑥  ∧  𝐵  ∈  On )  →  ( ∅  ·o  ( 𝐵  +o  𝑥 ) )  =  ( ( ∅  ·o  𝐵 )  +o  ( ∅  ·o  𝑥 ) ) ) | 
						
							| 75 |  | oveq1 | ⊢ ( 𝐴  =  ∅  →  ( 𝐴  ·o  ( 𝐵  +o  𝑥 ) )  =  ( ∅  ·o  ( 𝐵  +o  𝑥 ) ) ) | 
						
							| 76 |  | oveq1 | ⊢ ( 𝐴  =  ∅  →  ( 𝐴  ·o  𝐵 )  =  ( ∅  ·o  𝐵 ) ) | 
						
							| 77 |  | oveq1 | ⊢ ( 𝐴  =  ∅  →  ( 𝐴  ·o  𝑥 )  =  ( ∅  ·o  𝑥 ) ) | 
						
							| 78 | 76 77 | oveq12d | ⊢ ( 𝐴  =  ∅  →  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑥 ) )  =  ( ( ∅  ·o  𝐵 )  +o  ( ∅  ·o  𝑥 ) ) ) | 
						
							| 79 | 75 78 | eqeq12d | ⊢ ( 𝐴  =  ∅  →  ( ( 𝐴  ·o  ( 𝐵  +o  𝑥 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑥 ) )  ↔  ( ∅  ·o  ( 𝐵  +o  𝑥 ) )  =  ( ( ∅  ·o  𝐵 )  +o  ( ∅  ·o  𝑥 ) ) ) ) | 
						
							| 80 | 74 79 | imbitrrid | ⊢ ( 𝐴  =  ∅  →  ( ( Lim  𝑥  ∧  𝐵  ∈  On )  →  ( 𝐴  ·o  ( 𝐵  +o  𝑥 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑥 ) ) ) ) | 
						
							| 81 | 80 | expd | ⊢ ( 𝐴  =  ∅  →  ( Lim  𝑥  →  ( 𝐵  ∈  On  →  ( 𝐴  ·o  ( 𝐵  +o  𝑥 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑥 ) ) ) ) ) | 
						
							| 82 | 81 | com3r | ⊢ ( 𝐵  ∈  On  →  ( 𝐴  =  ∅  →  ( Lim  𝑥  →  ( 𝐴  ·o  ( 𝐵  +o  𝑥 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑥 ) ) ) ) ) | 
						
							| 83 | 82 | imp | ⊢ ( ( 𝐵  ∈  On  ∧  𝐴  =  ∅ )  →  ( Lim  𝑥  →  ( 𝐴  ·o  ( 𝐵  +o  𝑥 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑥 ) ) ) ) | 
						
							| 84 | 83 | a1dd | ⊢ ( ( 𝐵  ∈  On  ∧  𝐴  =  ∅ )  →  ( Lim  𝑥  →  ( ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  →  ( 𝐴  ·o  ( 𝐵  +o  𝑥 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑥 ) ) ) ) ) | 
						
							| 85 |  | simplr | ⊢ ( ( ( 𝑥  ∈  On  ∧  𝐵  ∈  On )  ∧  𝑧  ∈  ( 𝐵  +o  𝑥 ) )  →  𝐵  ∈  On ) | 
						
							| 86 | 62 | ancoms | ⊢ ( ( 𝑥  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐵  +o  𝑥 )  ∈  On ) | 
						
							| 87 |  | onelon | ⊢ ( ( ( 𝐵  +o  𝑥 )  ∈  On  ∧  𝑧  ∈  ( 𝐵  +o  𝑥 ) )  →  𝑧  ∈  On ) | 
						
							| 88 | 86 87 | sylan | ⊢ ( ( ( 𝑥  ∈  On  ∧  𝐵  ∈  On )  ∧  𝑧  ∈  ( 𝐵  +o  𝑥 ) )  →  𝑧  ∈  On ) | 
						
							| 89 |  | ontri1 | ⊢ ( ( 𝐵  ∈  On  ∧  𝑧  ∈  On )  →  ( 𝐵  ⊆  𝑧  ↔  ¬  𝑧  ∈  𝐵 ) ) | 
						
							| 90 |  | oawordex | ⊢ ( ( 𝐵  ∈  On  ∧  𝑧  ∈  On )  →  ( 𝐵  ⊆  𝑧  ↔  ∃ 𝑣  ∈  On ( 𝐵  +o  𝑣 )  =  𝑧 ) ) | 
						
							| 91 | 89 90 | bitr3d | ⊢ ( ( 𝐵  ∈  On  ∧  𝑧  ∈  On )  →  ( ¬  𝑧  ∈  𝐵  ↔  ∃ 𝑣  ∈  On ( 𝐵  +o  𝑣 )  =  𝑧 ) ) | 
						
							| 92 | 85 88 91 | syl2anc | ⊢ ( ( ( 𝑥  ∈  On  ∧  𝐵  ∈  On )  ∧  𝑧  ∈  ( 𝐵  +o  𝑥 ) )  →  ( ¬  𝑧  ∈  𝐵  ↔  ∃ 𝑣  ∈  On ( 𝐵  +o  𝑣 )  =  𝑧 ) ) | 
						
							| 93 |  | oaord | ⊢ ( ( 𝑣  ∈  On  ∧  𝑥  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝑣  ∈  𝑥  ↔  ( 𝐵  +o  𝑣 )  ∈  ( 𝐵  +o  𝑥 ) ) ) | 
						
							| 94 | 93 | 3expb | ⊢ ( ( 𝑣  ∈  On  ∧  ( 𝑥  ∈  On  ∧  𝐵  ∈  On ) )  →  ( 𝑣  ∈  𝑥  ↔  ( 𝐵  +o  𝑣 )  ∈  ( 𝐵  +o  𝑥 ) ) ) | 
						
							| 95 |  | eleq1 | ⊢ ( ( 𝐵  +o  𝑣 )  =  𝑧  →  ( ( 𝐵  +o  𝑣 )  ∈  ( 𝐵  +o  𝑥 )  ↔  𝑧  ∈  ( 𝐵  +o  𝑥 ) ) ) | 
						
							| 96 | 94 95 | sylan9bb | ⊢ ( ( ( 𝑣  ∈  On  ∧  ( 𝑥  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 )  →  ( 𝑣  ∈  𝑥  ↔  𝑧  ∈  ( 𝐵  +o  𝑥 ) ) ) | 
						
							| 97 |  | iba | ⊢ ( ( 𝐵  +o  𝑣 )  =  𝑧  →  ( 𝑣  ∈  𝑥  ↔  ( 𝑣  ∈  𝑥  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 ) ) ) | 
						
							| 98 | 97 | adantl | ⊢ ( ( ( 𝑣  ∈  On  ∧  ( 𝑥  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 )  →  ( 𝑣  ∈  𝑥  ↔  ( 𝑣  ∈  𝑥  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 ) ) ) | 
						
							| 99 | 96 98 | bitr3d | ⊢ ( ( ( 𝑣  ∈  On  ∧  ( 𝑥  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 )  →  ( 𝑧  ∈  ( 𝐵  +o  𝑥 )  ↔  ( 𝑣  ∈  𝑥  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 ) ) ) | 
						
							| 100 | 99 | an32s | ⊢ ( ( ( 𝑣  ∈  On  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 )  ∧  ( 𝑥  ∈  On  ∧  𝐵  ∈  On ) )  →  ( 𝑧  ∈  ( 𝐵  +o  𝑥 )  ↔  ( 𝑣  ∈  𝑥  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 ) ) ) | 
						
							| 101 | 100 | biimpcd | ⊢ ( 𝑧  ∈  ( 𝐵  +o  𝑥 )  →  ( ( ( 𝑣  ∈  On  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 )  ∧  ( 𝑥  ∈  On  ∧  𝐵  ∈  On ) )  →  ( 𝑣  ∈  𝑥  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 ) ) ) | 
						
							| 102 | 101 | exp4c | ⊢ ( 𝑧  ∈  ( 𝐵  +o  𝑥 )  →  ( 𝑣  ∈  On  →  ( ( 𝐵  +o  𝑣 )  =  𝑧  →  ( ( 𝑥  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝑣  ∈  𝑥  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 ) ) ) ) ) | 
						
							| 103 | 102 | com4r | ⊢ ( ( 𝑥  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝑧  ∈  ( 𝐵  +o  𝑥 )  →  ( 𝑣  ∈  On  →  ( ( 𝐵  +o  𝑣 )  =  𝑧  →  ( 𝑣  ∈  𝑥  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 ) ) ) ) ) | 
						
							| 104 | 103 | imp | ⊢ ( ( ( 𝑥  ∈  On  ∧  𝐵  ∈  On )  ∧  𝑧  ∈  ( 𝐵  +o  𝑥 ) )  →  ( 𝑣  ∈  On  →  ( ( 𝐵  +o  𝑣 )  =  𝑧  →  ( 𝑣  ∈  𝑥  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 ) ) ) ) | 
						
							| 105 | 104 | reximdvai | ⊢ ( ( ( 𝑥  ∈  On  ∧  𝐵  ∈  On )  ∧  𝑧  ∈  ( 𝐵  +o  𝑥 ) )  →  ( ∃ 𝑣  ∈  On ( 𝐵  +o  𝑣 )  =  𝑧  →  ∃ 𝑣  ∈  On ( 𝑣  ∈  𝑥  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 ) ) ) | 
						
							| 106 | 92 105 | sylbid | ⊢ ( ( ( 𝑥  ∈  On  ∧  𝐵  ∈  On )  ∧  𝑧  ∈  ( 𝐵  +o  𝑥 ) )  →  ( ¬  𝑧  ∈  𝐵  →  ∃ 𝑣  ∈  On ( 𝑣  ∈  𝑥  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 ) ) ) | 
						
							| 107 | 106 | orrd | ⊢ ( ( ( 𝑥  ∈  On  ∧  𝐵  ∈  On )  ∧  𝑧  ∈  ( 𝐵  +o  𝑥 ) )  →  ( 𝑧  ∈  𝐵  ∨  ∃ 𝑣  ∈  On ( 𝑣  ∈  𝑥  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 ) ) ) | 
						
							| 108 | 61 107 | sylanl1 | ⊢ ( ( ( Lim  𝑥  ∧  𝐵  ∈  On )  ∧  𝑧  ∈  ( 𝐵  +o  𝑥 ) )  →  ( 𝑧  ∈  𝐵  ∨  ∃ 𝑣  ∈  On ( 𝑣  ∈  𝑥  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 ) ) ) | 
						
							| 109 | 108 | adantlrl | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  𝑧  ∈  ( 𝐵  +o  𝑥 ) )  →  ( 𝑧  ∈  𝐵  ∨  ∃ 𝑣  ∈  On ( 𝑣  ∈  𝑥  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 ) ) ) | 
						
							| 110 | 109 | adantlr | ⊢ ( ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ( ∅  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) ) )  ∧  𝑧  ∈  ( 𝐵  +o  𝑥 ) )  →  ( 𝑧  ∈  𝐵  ∨  ∃ 𝑣  ∈  On ( 𝑣  ∈  𝑥  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 ) ) ) | 
						
							| 111 |  | 0ellim | ⊢ ( Lim  𝑥  →  ∅  ∈  𝑥 ) | 
						
							| 112 |  | om00el | ⊢ ( ( 𝐴  ∈  On  ∧  𝑥  ∈  On )  →  ( ∅  ∈  ( 𝐴  ·o  𝑥 )  ↔  ( ∅  ∈  𝐴  ∧  ∅  ∈  𝑥 ) ) ) | 
						
							| 113 | 112 | biimprd | ⊢ ( ( 𝐴  ∈  On  ∧  𝑥  ∈  On )  →  ( ( ∅  ∈  𝐴  ∧  ∅  ∈  𝑥 )  →  ∅  ∈  ( 𝐴  ·o  𝑥 ) ) ) | 
						
							| 114 | 111 113 | sylan2i | ⊢ ( ( 𝐴  ∈  On  ∧  𝑥  ∈  On )  →  ( ( ∅  ∈  𝐴  ∧  Lim  𝑥 )  →  ∅  ∈  ( 𝐴  ·o  𝑥 ) ) ) | 
						
							| 115 | 61 114 | sylan2 | ⊢ ( ( 𝐴  ∈  On  ∧  Lim  𝑥 )  →  ( ( ∅  ∈  𝐴  ∧  Lim  𝑥 )  →  ∅  ∈  ( 𝐴  ·o  𝑥 ) ) ) | 
						
							| 116 | 115 | exp4b | ⊢ ( 𝐴  ∈  On  →  ( Lim  𝑥  →  ( ∅  ∈  𝐴  →  ( Lim  𝑥  →  ∅  ∈  ( 𝐴  ·o  𝑥 ) ) ) ) ) | 
						
							| 117 | 116 | com4r | ⊢ ( Lim  𝑥  →  ( 𝐴  ∈  On  →  ( Lim  𝑥  →  ( ∅  ∈  𝐴  →  ∅  ∈  ( 𝐴  ·o  𝑥 ) ) ) ) ) | 
						
							| 118 | 117 | pm2.43a | ⊢ ( Lim  𝑥  →  ( 𝐴  ∈  On  →  ( ∅  ∈  𝐴  →  ∅  ∈  ( 𝐴  ·o  𝑥 ) ) ) ) | 
						
							| 119 | 118 | imp31 | ⊢ ( ( ( Lim  𝑥  ∧  𝐴  ∈  On )  ∧  ∅  ∈  𝐴 )  →  ∅  ∈  ( 𝐴  ·o  𝑥 ) ) | 
						
							| 120 | 119 | a1d | ⊢ ( ( ( Lim  𝑥  ∧  𝐴  ∈  On )  ∧  ∅  ∈  𝐴 )  →  ( 𝑧  ∈  𝐵  →  ∅  ∈  ( 𝐴  ·o  𝑥 ) ) ) | 
						
							| 121 | 120 | adantlrr | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ∅  ∈  𝐴 )  →  ( 𝑧  ∈  𝐵  →  ∅  ∈  ( 𝐴  ·o  𝑥 ) ) ) | 
						
							| 122 |  | omordi | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐴  ∈  On )  ∧  ∅  ∈  𝐴 )  →  ( 𝑧  ∈  𝐵  →  ( 𝐴  ·o  𝑧 )  ∈  ( 𝐴  ·o  𝐵 ) ) ) | 
						
							| 123 | 122 | ancom1s | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ∅  ∈  𝐴 )  →  ( 𝑧  ∈  𝐵  →  ( 𝐴  ·o  𝑧 )  ∈  ( 𝐴  ·o  𝐵 ) ) ) | 
						
							| 124 |  | onelss | ⊢ ( ( 𝐴  ·o  𝐵 )  ∈  On  →  ( ( 𝐴  ·o  𝑧 )  ∈  ( 𝐴  ·o  𝐵 )  →  ( 𝐴  ·o  𝑧 )  ⊆  ( 𝐴  ·o  𝐵 ) ) ) | 
						
							| 125 | 22 | sseq2d | ⊢ ( ( 𝐴  ·o  𝐵 )  ∈  On  →  ( ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  ∅ )  ↔  ( 𝐴  ·o  𝑧 )  ⊆  ( 𝐴  ·o  𝐵 ) ) ) | 
						
							| 126 | 124 125 | sylibrd | ⊢ ( ( 𝐴  ·o  𝐵 )  ∈  On  →  ( ( 𝐴  ·o  𝑧 )  ∈  ( 𝐴  ·o  𝐵 )  →  ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  ∅ ) ) ) | 
						
							| 127 | 21 126 | syl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  ·o  𝑧 )  ∈  ( 𝐴  ·o  𝐵 )  →  ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  ∅ ) ) ) | 
						
							| 128 | 127 | adantr | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ∅  ∈  𝐴 )  →  ( ( 𝐴  ·o  𝑧 )  ∈  ( 𝐴  ·o  𝐵 )  →  ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  ∅ ) ) ) | 
						
							| 129 | 123 128 | syld | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ∅  ∈  𝐴 )  →  ( 𝑧  ∈  𝐵  →  ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  ∅ ) ) ) | 
						
							| 130 | 129 | adantll | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ∅  ∈  𝐴 )  →  ( 𝑧  ∈  𝐵  →  ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  ∅ ) ) ) | 
						
							| 131 | 121 130 | jcad | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ∅  ∈  𝐴 )  →  ( 𝑧  ∈  𝐵  →  ( ∅  ∈  ( 𝐴  ·o  𝑥 )  ∧  ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  ∅ ) ) ) ) | 
						
							| 132 |  | oveq2 | ⊢ ( 𝑤  =  ∅  →  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  =  ( ( 𝐴  ·o  𝐵 )  +o  ∅ ) ) | 
						
							| 133 | 132 | sseq2d | ⊢ ( 𝑤  =  ∅  →  ( ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ↔  ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  ∅ ) ) ) | 
						
							| 134 | 133 | rspcev | ⊢ ( ( ∅  ∈  ( 𝐴  ·o  𝑥 )  ∧  ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  ∅ ) )  →  ∃ 𝑤  ∈  ( 𝐴  ·o  𝑥 ) ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 ) ) | 
						
							| 135 | 131 134 | syl6 | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ∅  ∈  𝐴 )  →  ( 𝑧  ∈  𝐵  →  ∃ 𝑤  ∈  ( 𝐴  ·o  𝑥 ) ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 ) ) ) | 
						
							| 136 | 135 | adantrr | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ( ∅  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) ) )  →  ( 𝑧  ∈  𝐵  →  ∃ 𝑤  ∈  ( 𝐴  ·o  𝑥 ) ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 ) ) ) | 
						
							| 137 |  | omordi | ⊢ ( ( ( 𝑥  ∈  On  ∧  𝐴  ∈  On )  ∧  ∅  ∈  𝐴 )  →  ( 𝑣  ∈  𝑥  →  ( 𝐴  ·o  𝑣 )  ∈  ( 𝐴  ·o  𝑥 ) ) ) | 
						
							| 138 | 61 137 | sylanl1 | ⊢ ( ( ( Lim  𝑥  ∧  𝐴  ∈  On )  ∧  ∅  ∈  𝐴 )  →  ( 𝑣  ∈  𝑥  →  ( 𝐴  ·o  𝑣 )  ∈  ( 𝐴  ·o  𝑥 ) ) ) | 
						
							| 139 | 138 | adantrd | ⊢ ( ( ( Lim  𝑥  ∧  𝐴  ∈  On )  ∧  ∅  ∈  𝐴 )  →  ( ( 𝑣  ∈  𝑥  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 )  →  ( 𝐴  ·o  𝑣 )  ∈  ( 𝐴  ·o  𝑥 ) ) ) | 
						
							| 140 | 139 | adantrr | ⊢ ( ( ( Lim  𝑥  ∧  𝐴  ∈  On )  ∧  ( ∅  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) ) )  →  ( ( 𝑣  ∈  𝑥  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 )  →  ( 𝐴  ·o  𝑣 )  ∈  ( 𝐴  ·o  𝑥 ) ) ) | 
						
							| 141 |  | oveq2 | ⊢ ( 𝑦  =  𝑣  →  ( 𝐵  +o  𝑦 )  =  ( 𝐵  +o  𝑣 ) ) | 
						
							| 142 | 141 | oveq2d | ⊢ ( 𝑦  =  𝑣  →  ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) ) ) | 
						
							| 143 |  | oveq2 | ⊢ ( 𝑦  =  𝑣  →  ( 𝐴  ·o  𝑦 )  =  ( 𝐴  ·o  𝑣 ) ) | 
						
							| 144 | 143 | oveq2d | ⊢ ( 𝑦  =  𝑣  →  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) ) ) | 
						
							| 145 | 142 144 | eqeq12d | ⊢ ( 𝑦  =  𝑣  →  ( ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  ↔  ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) ) ) ) | 
						
							| 146 | 145 | rspccv | ⊢ ( ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  →  ( 𝑣  ∈  𝑥  →  ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) ) ) ) | 
						
							| 147 |  | oveq2 | ⊢ ( ( 𝐵  +o  𝑣 )  =  𝑧  →  ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) )  =  ( 𝐴  ·o  𝑧 ) ) | 
						
							| 148 |  | eqeq1 | ⊢ ( ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) )  →  ( ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) )  =  ( 𝐴  ·o  𝑧 )  ↔  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) )  =  ( 𝐴  ·o  𝑧 ) ) ) | 
						
							| 149 | 147 148 | imbitrid | ⊢ ( ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) )  →  ( ( 𝐵  +o  𝑣 )  =  𝑧  →  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) )  =  ( 𝐴  ·o  𝑧 ) ) ) | 
						
							| 150 |  | eqimss2 | ⊢ ( ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) )  =  ( 𝐴  ·o  𝑧 )  →  ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) ) ) | 
						
							| 151 | 149 150 | syl6 | ⊢ ( ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) )  →  ( ( 𝐵  +o  𝑣 )  =  𝑧  →  ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) ) ) ) | 
						
							| 152 | 151 | imim2i | ⊢ ( ( 𝑣  ∈  𝑥  →  ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) ) )  →  ( 𝑣  ∈  𝑥  →  ( ( 𝐵  +o  𝑣 )  =  𝑧  →  ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) ) ) ) ) | 
						
							| 153 | 152 | impd | ⊢ ( ( 𝑣  ∈  𝑥  →  ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) ) )  →  ( ( 𝑣  ∈  𝑥  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 )  →  ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) ) ) ) | 
						
							| 154 | 146 153 | syl | ⊢ ( ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  →  ( ( 𝑣  ∈  𝑥  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 )  →  ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) ) ) ) | 
						
							| 155 | 154 | ad2antll | ⊢ ( ( ( Lim  𝑥  ∧  𝐴  ∈  On )  ∧  ( ∅  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) ) )  →  ( ( 𝑣  ∈  𝑥  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 )  →  ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) ) ) ) | 
						
							| 156 | 140 155 | jcad | ⊢ ( ( ( Lim  𝑥  ∧  𝐴  ∈  On )  ∧  ( ∅  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) ) )  →  ( ( 𝑣  ∈  𝑥  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 )  →  ( ( 𝐴  ·o  𝑣 )  ∈  ( 𝐴  ·o  𝑥 )  ∧  ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) ) ) ) ) | 
						
							| 157 |  | oveq2 | ⊢ ( 𝑤  =  ( 𝐴  ·o  𝑣 )  →  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) ) ) | 
						
							| 158 | 157 | sseq2d | ⊢ ( 𝑤  =  ( 𝐴  ·o  𝑣 )  →  ( ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ↔  ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) ) ) ) | 
						
							| 159 | 158 | rspcev | ⊢ ( ( ( 𝐴  ·o  𝑣 )  ∈  ( 𝐴  ·o  𝑥 )  ∧  ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) ) )  →  ∃ 𝑤  ∈  ( 𝐴  ·o  𝑥 ) ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 ) ) | 
						
							| 160 | 156 159 | syl6 | ⊢ ( ( ( Lim  𝑥  ∧  𝐴  ∈  On )  ∧  ( ∅  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) ) )  →  ( ( 𝑣  ∈  𝑥  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 )  →  ∃ 𝑤  ∈  ( 𝐴  ·o  𝑥 ) ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 ) ) ) | 
						
							| 161 | 160 | rexlimdvw | ⊢ ( ( ( Lim  𝑥  ∧  𝐴  ∈  On )  ∧  ( ∅  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) ) )  →  ( ∃ 𝑣  ∈  On ( 𝑣  ∈  𝑥  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 )  →  ∃ 𝑤  ∈  ( 𝐴  ·o  𝑥 ) ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 ) ) ) | 
						
							| 162 | 161 | adantlrr | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ( ∅  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) ) )  →  ( ∃ 𝑣  ∈  On ( 𝑣  ∈  𝑥  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 )  →  ∃ 𝑤  ∈  ( 𝐴  ·o  𝑥 ) ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 ) ) ) | 
						
							| 163 | 136 162 | jaod | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ( ∅  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) ) )  →  ( ( 𝑧  ∈  𝐵  ∨  ∃ 𝑣  ∈  On ( 𝑣  ∈  𝑥  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 ) )  →  ∃ 𝑤  ∈  ( 𝐴  ·o  𝑥 ) ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 ) ) ) | 
						
							| 164 | 163 | adantr | ⊢ ( ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ( ∅  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) ) )  ∧  𝑧  ∈  ( 𝐵  +o  𝑥 ) )  →  ( ( 𝑧  ∈  𝐵  ∨  ∃ 𝑣  ∈  On ( 𝑣  ∈  𝑥  ∧  ( 𝐵  +o  𝑣 )  =  𝑧 ) )  →  ∃ 𝑤  ∈  ( 𝐴  ·o  𝑥 ) ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 ) ) ) | 
						
							| 165 | 110 164 | mpd | ⊢ ( ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ( ∅  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) ) )  ∧  𝑧  ∈  ( 𝐵  +o  𝑥 ) )  →  ∃ 𝑤  ∈  ( 𝐴  ·o  𝑥 ) ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 ) ) | 
						
							| 166 | 165 | ralrimiva | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ( ∅  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) ) )  →  ∀ 𝑧  ∈  ( 𝐵  +o  𝑥 ) ∃ 𝑤  ∈  ( 𝐴  ·o  𝑥 ) ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 ) ) | 
						
							| 167 |  | iunss2 | ⊢ ( ∀ 𝑧  ∈  ( 𝐵  +o  𝑥 ) ∃ 𝑤  ∈  ( 𝐴  ·o  𝑥 ) ( 𝐴  ·o  𝑧 )  ⊆  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  →  ∪  𝑧  ∈  ( 𝐵  +o  𝑥 ) ( 𝐴  ·o  𝑧 )  ⊆  ∪  𝑤  ∈  ( 𝐴  ·o  𝑥 ) ( ( 𝐴  ·o  𝐵 )  +o  𝑤 ) ) | 
						
							| 168 | 166 167 | syl | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ( ∅  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) ) )  →  ∪  𝑧  ∈  ( 𝐵  +o  𝑥 ) ( 𝐴  ·o  𝑧 )  ⊆  ∪  𝑤  ∈  ( 𝐴  ·o  𝑥 ) ( ( 𝐴  ·o  𝐵 )  +o  𝑤 ) ) | 
						
							| 169 |  | omordlim | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝑥  ∈  V  ∧  Lim  𝑥 ) )  ∧  𝑤  ∈  ( 𝐴  ·o  𝑥 ) )  →  ∃ 𝑣  ∈  𝑥 𝑤  ∈  ( 𝐴  ·o  𝑣 ) ) | 
						
							| 170 | 169 | ex | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝑥  ∈  V  ∧  Lim  𝑥 ) )  →  ( 𝑤  ∈  ( 𝐴  ·o  𝑥 )  →  ∃ 𝑣  ∈  𝑥 𝑤  ∈  ( 𝐴  ·o  𝑣 ) ) ) | 
						
							| 171 | 59 170 | mpanr1 | ⊢ ( ( 𝐴  ∈  On  ∧  Lim  𝑥 )  →  ( 𝑤  ∈  ( 𝐴  ·o  𝑥 )  →  ∃ 𝑣  ∈  𝑥 𝑤  ∈  ( 𝐴  ·o  𝑣 ) ) ) | 
						
							| 172 | 171 | ancoms | ⊢ ( ( Lim  𝑥  ∧  𝐴  ∈  On )  →  ( 𝑤  ∈  ( 𝐴  ·o  𝑥 )  →  ∃ 𝑣  ∈  𝑥 𝑤  ∈  ( 𝐴  ·o  𝑣 ) ) ) | 
						
							| 173 | 172 | imp | ⊢ ( ( ( Lim  𝑥  ∧  𝐴  ∈  On )  ∧  𝑤  ∈  ( 𝐴  ·o  𝑥 ) )  →  ∃ 𝑣  ∈  𝑥 𝑤  ∈  ( 𝐴  ·o  𝑣 ) ) | 
						
							| 174 | 173 | adantlrr | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  𝑤  ∈  ( 𝐴  ·o  𝑥 ) )  →  ∃ 𝑣  ∈  𝑥 𝑤  ∈  ( 𝐴  ·o  𝑣 ) ) | 
						
							| 175 | 174 | adantlr | ⊢ ( ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) )  ∧  𝑤  ∈  ( 𝐴  ·o  𝑥 ) )  →  ∃ 𝑣  ∈  𝑥 𝑤  ∈  ( 𝐴  ·o  𝑣 ) ) | 
						
							| 176 |  | oaordi | ⊢ ( ( 𝑥  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝑣  ∈  𝑥  →  ( 𝐵  +o  𝑣 )  ∈  ( 𝐵  +o  𝑥 ) ) ) | 
						
							| 177 | 61 176 | sylan | ⊢ ( ( Lim  𝑥  ∧  𝐵  ∈  On )  →  ( 𝑣  ∈  𝑥  →  ( 𝐵  +o  𝑣 )  ∈  ( 𝐵  +o  𝑥 ) ) ) | 
						
							| 178 | 177 | imp | ⊢ ( ( ( Lim  𝑥  ∧  𝐵  ∈  On )  ∧  𝑣  ∈  𝑥 )  →  ( 𝐵  +o  𝑣 )  ∈  ( 𝐵  +o  𝑥 ) ) | 
						
							| 179 | 178 | adantlrl | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  𝑣  ∈  𝑥 )  →  ( 𝐵  +o  𝑣 )  ∈  ( 𝐵  +o  𝑥 ) ) | 
						
							| 180 | 179 | a1d | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  𝑣  ∈  𝑥 )  →  ( 𝑤  ∈  ( 𝐴  ·o  𝑣 )  →  ( 𝐵  +o  𝑣 )  ∈  ( 𝐵  +o  𝑥 ) ) ) | 
						
							| 181 | 180 | adantlr | ⊢ ( ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) )  ∧  𝑣  ∈  𝑥 )  →  ( 𝑤  ∈  ( 𝐴  ·o  𝑣 )  →  ( 𝐵  +o  𝑣 )  ∈  ( 𝐵  +o  𝑥 ) ) ) | 
						
							| 182 |  | limord | ⊢ ( Lim  𝑥  →  Ord  𝑥 ) | 
						
							| 183 |  | ordelon | ⊢ ( ( Ord  𝑥  ∧  𝑣  ∈  𝑥 )  →  𝑣  ∈  On ) | 
						
							| 184 | 182 183 | sylan | ⊢ ( ( Lim  𝑥  ∧  𝑣  ∈  𝑥 )  →  𝑣  ∈  On ) | 
						
							| 185 |  | omcl | ⊢ ( ( 𝐴  ∈  On  ∧  𝑣  ∈  On )  →  ( 𝐴  ·o  𝑣 )  ∈  On ) | 
						
							| 186 | 185 | ancoms | ⊢ ( ( 𝑣  ∈  On  ∧  𝐴  ∈  On )  →  ( 𝐴  ·o  𝑣 )  ∈  On ) | 
						
							| 187 | 186 | adantrr | ⊢ ( ( 𝑣  ∈  On  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  →  ( 𝐴  ·o  𝑣 )  ∈  On ) | 
						
							| 188 | 21 | adantl | ⊢ ( ( 𝑣  ∈  On  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  →  ( 𝐴  ·o  𝐵 )  ∈  On ) | 
						
							| 189 |  | oaordi | ⊢ ( ( ( 𝐴  ·o  𝑣 )  ∈  On  ∧  ( 𝐴  ·o  𝐵 )  ∈  On )  →  ( 𝑤  ∈  ( 𝐴  ·o  𝑣 )  →  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ∈  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) ) ) ) | 
						
							| 190 | 187 188 189 | syl2anc | ⊢ ( ( 𝑣  ∈  On  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  →  ( 𝑤  ∈  ( 𝐴  ·o  𝑣 )  →  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ∈  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) ) ) ) | 
						
							| 191 | 184 190 | sylan | ⊢ ( ( ( Lim  𝑥  ∧  𝑣  ∈  𝑥 )  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  →  ( 𝑤  ∈  ( 𝐴  ·o  𝑣 )  →  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ∈  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) ) ) ) | 
						
							| 192 | 191 | an32s | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  𝑣  ∈  𝑥 )  →  ( 𝑤  ∈  ( 𝐴  ·o  𝑣 )  →  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ∈  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) ) ) ) | 
						
							| 193 | 192 | adantlr | ⊢ ( ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) )  ∧  𝑣  ∈  𝑥 )  →  ( 𝑤  ∈  ( 𝐴  ·o  𝑣 )  →  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ∈  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) ) ) ) | 
						
							| 194 | 145 | rspccva | ⊢ ( ( ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  ∧  𝑣  ∈  𝑥 )  →  ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) ) ) | 
						
							| 195 | 194 | eleq2d | ⊢ ( ( ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  ∧  𝑣  ∈  𝑥 )  →  ( ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ∈  ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) )  ↔  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ∈  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) ) ) ) | 
						
							| 196 | 195 | adantll | ⊢ ( ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) )  ∧  𝑣  ∈  𝑥 )  →  ( ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ∈  ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) )  ↔  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ∈  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑣 ) ) ) ) | 
						
							| 197 | 193 196 | sylibrd | ⊢ ( ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) )  ∧  𝑣  ∈  𝑥 )  →  ( 𝑤  ∈  ( 𝐴  ·o  𝑣 )  →  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ∈  ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) ) ) ) | 
						
							| 198 |  | oacl | ⊢ ( ( 𝐵  ∈  On  ∧  𝑣  ∈  On )  →  ( 𝐵  +o  𝑣 )  ∈  On ) | 
						
							| 199 | 198 | ancoms | ⊢ ( ( 𝑣  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐵  +o  𝑣 )  ∈  On ) | 
						
							| 200 |  | omcl | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐵  +o  𝑣 )  ∈  On )  →  ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) )  ∈  On ) | 
						
							| 201 | 199 200 | sylan2 | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝑣  ∈  On  ∧  𝐵  ∈  On ) )  →  ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) )  ∈  On ) | 
						
							| 202 | 201 | an12s | ⊢ ( ( 𝑣  ∈  On  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  →  ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) )  ∈  On ) | 
						
							| 203 | 184 202 | sylan | ⊢ ( ( ( Lim  𝑥  ∧  𝑣  ∈  𝑥 )  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  →  ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) )  ∈  On ) | 
						
							| 204 | 203 | an32s | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  𝑣  ∈  𝑥 )  →  ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) )  ∈  On ) | 
						
							| 205 |  | onelss | ⊢ ( ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) )  ∈  On  →  ( ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ∈  ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) )  →  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ⊆  ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) ) ) ) | 
						
							| 206 | 204 205 | syl | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  𝑣  ∈  𝑥 )  →  ( ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ∈  ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) )  →  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ⊆  ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) ) ) ) | 
						
							| 207 | 206 | adantlr | ⊢ ( ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) )  ∧  𝑣  ∈  𝑥 )  →  ( ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ∈  ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) )  →  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ⊆  ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) ) ) ) | 
						
							| 208 | 197 207 | syld | ⊢ ( ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) )  ∧  𝑣  ∈  𝑥 )  →  ( 𝑤  ∈  ( 𝐴  ·o  𝑣 )  →  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ⊆  ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) ) ) ) | 
						
							| 209 | 181 208 | jcad | ⊢ ( ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) )  ∧  𝑣  ∈  𝑥 )  →  ( 𝑤  ∈  ( 𝐴  ·o  𝑣 )  →  ( ( 𝐵  +o  𝑣 )  ∈  ( 𝐵  +o  𝑥 )  ∧  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ⊆  ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) ) ) ) ) | 
						
							| 210 |  | oveq2 | ⊢ ( 𝑧  =  ( 𝐵  +o  𝑣 )  →  ( 𝐴  ·o  𝑧 )  =  ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) ) ) | 
						
							| 211 | 210 | sseq2d | ⊢ ( 𝑧  =  ( 𝐵  +o  𝑣 )  →  ( ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ⊆  ( 𝐴  ·o  𝑧 )  ↔  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ⊆  ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) ) ) ) | 
						
							| 212 | 211 | rspcev | ⊢ ( ( ( 𝐵  +o  𝑣 )  ∈  ( 𝐵  +o  𝑥 )  ∧  ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ⊆  ( 𝐴  ·o  ( 𝐵  +o  𝑣 ) ) )  →  ∃ 𝑧  ∈  ( 𝐵  +o  𝑥 ) ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ⊆  ( 𝐴  ·o  𝑧 ) ) | 
						
							| 213 | 209 212 | syl6 | ⊢ ( ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) )  ∧  𝑣  ∈  𝑥 )  →  ( 𝑤  ∈  ( 𝐴  ·o  𝑣 )  →  ∃ 𝑧  ∈  ( 𝐵  +o  𝑥 ) ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ⊆  ( 𝐴  ·o  𝑧 ) ) ) | 
						
							| 214 | 213 | rexlimdva | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) )  →  ( ∃ 𝑣  ∈  𝑥 𝑤  ∈  ( 𝐴  ·o  𝑣 )  →  ∃ 𝑧  ∈  ( 𝐵  +o  𝑥 ) ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ⊆  ( 𝐴  ·o  𝑧 ) ) ) | 
						
							| 215 | 214 | adantr | ⊢ ( ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) )  ∧  𝑤  ∈  ( 𝐴  ·o  𝑥 ) )  →  ( ∃ 𝑣  ∈  𝑥 𝑤  ∈  ( 𝐴  ·o  𝑣 )  →  ∃ 𝑧  ∈  ( 𝐵  +o  𝑥 ) ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ⊆  ( 𝐴  ·o  𝑧 ) ) ) | 
						
							| 216 | 175 215 | mpd | ⊢ ( ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) )  ∧  𝑤  ∈  ( 𝐴  ·o  𝑥 ) )  →  ∃ 𝑧  ∈  ( 𝐵  +o  𝑥 ) ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ⊆  ( 𝐴  ·o  𝑧 ) ) | 
						
							| 217 | 216 | ralrimiva | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) )  →  ∀ 𝑤  ∈  ( 𝐴  ·o  𝑥 ) ∃ 𝑧  ∈  ( 𝐵  +o  𝑥 ) ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ⊆  ( 𝐴  ·o  𝑧 ) ) | 
						
							| 218 |  | iunss2 | ⊢ ( ∀ 𝑤  ∈  ( 𝐴  ·o  𝑥 ) ∃ 𝑧  ∈  ( 𝐵  +o  𝑥 ) ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ⊆  ( 𝐴  ·o  𝑧 )  →  ∪  𝑤  ∈  ( 𝐴  ·o  𝑥 ) ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ⊆  ∪  𝑧  ∈  ( 𝐵  +o  𝑥 ) ( 𝐴  ·o  𝑧 ) ) | 
						
							| 219 | 217 218 | syl | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) )  →  ∪  𝑤  ∈  ( 𝐴  ·o  𝑥 ) ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ⊆  ∪  𝑧  ∈  ( 𝐵  +o  𝑥 ) ( 𝐴  ·o  𝑧 ) ) | 
						
							| 220 | 219 | adantrl | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ( ∅  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) ) )  →  ∪  𝑤  ∈  ( 𝐴  ·o  𝑥 ) ( ( 𝐴  ·o  𝐵 )  +o  𝑤 )  ⊆  ∪  𝑧  ∈  ( 𝐵  +o  𝑥 ) ( 𝐴  ·o  𝑧 ) ) | 
						
							| 221 | 168 220 | eqssd | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ( ∅  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) ) )  →  ∪  𝑧  ∈  ( 𝐵  +o  𝑥 ) ( 𝐴  ·o  𝑧 )  =  ∪  𝑤  ∈  ( 𝐴  ·o  𝑥 ) ( ( 𝐴  ·o  𝐵 )  +o  𝑤 ) ) | 
						
							| 222 |  | oalimcl | ⊢ ( ( 𝐵  ∈  On  ∧  ( 𝑥  ∈  V  ∧  Lim  𝑥 ) )  →  Lim  ( 𝐵  +o  𝑥 ) ) | 
						
							| 223 | 59 222 | mpanr1 | ⊢ ( ( 𝐵  ∈  On  ∧  Lim  𝑥 )  →  Lim  ( 𝐵  +o  𝑥 ) ) | 
						
							| 224 | 223 | ancoms | ⊢ ( ( Lim  𝑥  ∧  𝐵  ∈  On )  →  Lim  ( 𝐵  +o  𝑥 ) ) | 
						
							| 225 | 224 | anim2i | ⊢ ( ( 𝐴  ∈  On  ∧  ( Lim  𝑥  ∧  𝐵  ∈  On ) )  →  ( 𝐴  ∈  On  ∧  Lim  ( 𝐵  +o  𝑥 ) ) ) | 
						
							| 226 | 225 | an12s | ⊢ ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  →  ( 𝐴  ∈  On  ∧  Lim  ( 𝐵  +o  𝑥 ) ) ) | 
						
							| 227 |  | ovex | ⊢ ( 𝐵  +o  𝑥 )  ∈  V | 
						
							| 228 |  | omlim | ⊢ ( ( 𝐴  ∈  On  ∧  ( ( 𝐵  +o  𝑥 )  ∈  V  ∧  Lim  ( 𝐵  +o  𝑥 ) ) )  →  ( 𝐴  ·o  ( 𝐵  +o  𝑥 ) )  =  ∪  𝑧  ∈  ( 𝐵  +o  𝑥 ) ( 𝐴  ·o  𝑧 ) ) | 
						
							| 229 | 227 228 | mpanr1 | ⊢ ( ( 𝐴  ∈  On  ∧  Lim  ( 𝐵  +o  𝑥 ) )  →  ( 𝐴  ·o  ( 𝐵  +o  𝑥 ) )  =  ∪  𝑧  ∈  ( 𝐵  +o  𝑥 ) ( 𝐴  ·o  𝑧 ) ) | 
						
							| 230 | 226 229 | syl | ⊢ ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  →  ( 𝐴  ·o  ( 𝐵  +o  𝑥 ) )  =  ∪  𝑧  ∈  ( 𝐵  +o  𝑥 ) ( 𝐴  ·o  𝑧 ) ) | 
						
							| 231 | 230 | adantr | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ( ∅  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) ) )  →  ( 𝐴  ·o  ( 𝐵  +o  𝑥 ) )  =  ∪  𝑧  ∈  ( 𝐵  +o  𝑥 ) ( 𝐴  ·o  𝑧 ) ) | 
						
							| 232 | 21 | ad2antlr | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ∅  ∈  𝐴 )  →  ( 𝐴  ·o  𝐵 )  ∈  On ) | 
						
							| 233 | 59 | jctl | ⊢ ( Lim  𝑥  →  ( 𝑥  ∈  V  ∧  Lim  𝑥 ) ) | 
						
							| 234 | 233 | anim1ci | ⊢ ( ( Lim  𝑥  ∧  𝐴  ∈  On )  →  ( 𝐴  ∈  On  ∧  ( 𝑥  ∈  V  ∧  Lim  𝑥 ) ) ) | 
						
							| 235 |  | omlimcl | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝑥  ∈  V  ∧  Lim  𝑥 ) )  ∧  ∅  ∈  𝐴 )  →  Lim  ( 𝐴  ·o  𝑥 ) ) | 
						
							| 236 | 234 235 | sylan | ⊢ ( ( ( Lim  𝑥  ∧  𝐴  ∈  On )  ∧  ∅  ∈  𝐴 )  →  Lim  ( 𝐴  ·o  𝑥 ) ) | 
						
							| 237 | 236 | adantlrr | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ∅  ∈  𝐴 )  →  Lim  ( 𝐴  ·o  𝑥 ) ) | 
						
							| 238 |  | ovex | ⊢ ( 𝐴  ·o  𝑥 )  ∈  V | 
						
							| 239 | 237 238 | jctil | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ∅  ∈  𝐴 )  →  ( ( 𝐴  ·o  𝑥 )  ∈  V  ∧  Lim  ( 𝐴  ·o  𝑥 ) ) ) | 
						
							| 240 |  | oalim | ⊢ ( ( ( 𝐴  ·o  𝐵 )  ∈  On  ∧  ( ( 𝐴  ·o  𝑥 )  ∈  V  ∧  Lim  ( 𝐴  ·o  𝑥 ) ) )  →  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑥 ) )  =  ∪  𝑤  ∈  ( 𝐴  ·o  𝑥 ) ( ( 𝐴  ·o  𝐵 )  +o  𝑤 ) ) | 
						
							| 241 | 232 239 240 | syl2anc | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ∅  ∈  𝐴 )  →  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑥 ) )  =  ∪  𝑤  ∈  ( 𝐴  ·o  𝑥 ) ( ( 𝐴  ·o  𝐵 )  +o  𝑤 ) ) | 
						
							| 242 | 241 | adantrr | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ( ∅  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) ) )  →  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑥 ) )  =  ∪  𝑤  ∈  ( 𝐴  ·o  𝑥 ) ( ( 𝐴  ·o  𝐵 )  +o  𝑤 ) ) | 
						
							| 243 | 221 231 242 | 3eqtr4d | ⊢ ( ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ( ∅  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) ) ) )  →  ( 𝐴  ·o  ( 𝐵  +o  𝑥 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑥 ) ) ) | 
						
							| 244 | 243 | exp43 | ⊢ ( Lim  𝑥  →  ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ∅  ∈  𝐴  →  ( ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  →  ( 𝐴  ·o  ( 𝐵  +o  𝑥 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑥 ) ) ) ) ) ) | 
						
							| 245 | 244 | com3l | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ∅  ∈  𝐴  →  ( Lim  𝑥  →  ( ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  →  ( 𝐴  ·o  ( 𝐵  +o  𝑥 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑥 ) ) ) ) ) ) | 
						
							| 246 | 245 | imp | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ∅  ∈  𝐴 )  →  ( Lim  𝑥  →  ( ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  →  ( 𝐴  ·o  ( 𝐵  +o  𝑥 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑥 ) ) ) ) ) | 
						
							| 247 | 84 246 | oe0lem | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( Lim  𝑥  →  ( ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  →  ( 𝐴  ·o  ( 𝐵  +o  𝑥 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑥 ) ) ) ) ) | 
						
							| 248 | 247 | com12 | ⊢ ( Lim  𝑥  →  ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ∀ 𝑦  ∈  𝑥 ( 𝐴  ·o  ( 𝐵  +o  𝑦 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑦 ) )  →  ( 𝐴  ·o  ( 𝐵  +o  𝑥 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝑥 ) ) ) ) ) | 
						
							| 249 | 5 10 15 20 30 58 248 | tfinds3 | ⊢ ( 𝐶  ∈  On  →  ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ·o  ( 𝐵  +o  𝐶 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝐶 ) ) ) ) | 
						
							| 250 | 249 | expdcom | ⊢ ( 𝐴  ∈  On  →  ( 𝐵  ∈  On  →  ( 𝐶  ∈  On  →  ( 𝐴  ·o  ( 𝐵  +o  𝐶 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝐶 ) ) ) ) ) | 
						
							| 251 | 250 | 3imp | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( 𝐴  ·o  ( 𝐵  +o  𝐶 ) )  =  ( ( 𝐴  ·o  𝐵 )  +o  ( 𝐴  ·o  𝐶 ) ) ) |