| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odcl.1 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | odcl.2 | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 3 |  | odid.3 | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 4 |  | odid.4 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 5 |  | oveq1 | ⊢ ( ( 𝑂 ‘ 𝐴 )  =  0  →  ( ( 𝑂 ‘ 𝐴 )  ·  𝐴 )  =  ( 0  ·  𝐴 ) ) | 
						
							| 6 | 1 4 3 | mulg0 | ⊢ ( 𝐴  ∈  𝑋  →  ( 0  ·  𝐴 )  =   0  ) | 
						
							| 7 | 5 6 | sylan9eqr | ⊢ ( ( 𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  ( ( 𝑂 ‘ 𝐴 )  ·  𝐴 )  =   0  ) | 
						
							| 8 | 7 | adantrr | ⊢ ( ( 𝐴  ∈  𝑋  ∧  ( ( 𝑂 ‘ 𝐴 )  =  0  ∧  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  }  =  ∅ ) )  →  ( ( 𝑂 ‘ 𝐴 )  ·  𝐴 )  =   0  ) | 
						
							| 9 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝑂 ‘ 𝐴 )  →  ( 𝑦  ·  𝐴 )  =  ( ( 𝑂 ‘ 𝐴 )  ·  𝐴 ) ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( 𝑦  =  ( 𝑂 ‘ 𝐴 )  →  ( ( 𝑦  ·  𝐴 )  =   0   ↔  ( ( 𝑂 ‘ 𝐴 )  ·  𝐴 )  =   0  ) ) | 
						
							| 11 | 10 | elrab | ⊢ ( ( 𝑂 ‘ 𝐴 )  ∈  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  }  ↔  ( ( 𝑂 ‘ 𝐴 )  ∈  ℕ  ∧  ( ( 𝑂 ‘ 𝐴 )  ·  𝐴 )  =   0  ) ) | 
						
							| 12 | 11 | simprbi | ⊢ ( ( 𝑂 ‘ 𝐴 )  ∈  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  }  →  ( ( 𝑂 ‘ 𝐴 )  ·  𝐴 )  =   0  ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  ∈  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } )  →  ( ( 𝑂 ‘ 𝐴 )  ·  𝐴 )  =   0  ) | 
						
							| 14 |  | eqid | ⊢ { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  }  =  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } | 
						
							| 15 | 1 3 4 2 14 | odlem1 | ⊢ ( 𝐴  ∈  𝑋  →  ( ( ( 𝑂 ‘ 𝐴 )  =  0  ∧  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  }  =  ∅ )  ∨  ( 𝑂 ‘ 𝐴 )  ∈  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } ) ) | 
						
							| 16 | 8 13 15 | mpjaodan | ⊢ ( 𝐴  ∈  𝑋  →  ( ( 𝑂 ‘ 𝐴 )  ·  𝐴 )  =   0  ) |