| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odf1.1 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | odf1.2 | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 3 |  | odf1.3 | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 4 |  | odf1.4 | ⊢ 𝐹  =  ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) ) | 
						
							| 5 |  | znnen | ⊢ ℤ  ≈  ℕ | 
						
							| 6 |  | nnenom | ⊢ ℕ  ≈  ω | 
						
							| 7 | 5 6 | entr2i | ⊢ ω  ≈  ℤ | 
						
							| 8 | 1 2 3 4 | odf1 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑂 ‘ 𝐴 )  =  0  ↔  𝐹 : ℤ –1-1→ 𝑋 ) ) | 
						
							| 9 | 8 | biimp3a | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  𝐹 : ℤ –1-1→ 𝑋 ) | 
						
							| 10 |  | f1f | ⊢ ( 𝐹 : ℤ –1-1→ 𝑋  →  𝐹 : ℤ ⟶ 𝑋 ) | 
						
							| 11 |  | zex | ⊢ ℤ  ∈  V | 
						
							| 12 | 1 | fvexi | ⊢ 𝑋  ∈  V | 
						
							| 13 |  | fex2 | ⊢ ( ( 𝐹 : ℤ ⟶ 𝑋  ∧  ℤ  ∈  V  ∧  𝑋  ∈  V )  →  𝐹  ∈  V ) | 
						
							| 14 | 11 12 13 | mp3an23 | ⊢ ( 𝐹 : ℤ ⟶ 𝑋  →  𝐹  ∈  V ) | 
						
							| 15 | 9 10 14 | 3syl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  𝐹  ∈  V ) | 
						
							| 16 |  | f1f1orn | ⊢ ( 𝐹 : ℤ –1-1→ 𝑋  →  𝐹 : ℤ –1-1-onto→ ran  𝐹 ) | 
						
							| 17 | 9 16 | syl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  𝐹 : ℤ –1-1-onto→ ran  𝐹 ) | 
						
							| 18 |  | f1oen3g | ⊢ ( ( 𝐹  ∈  V  ∧  𝐹 : ℤ –1-1-onto→ ran  𝐹 )  →  ℤ  ≈  ran  𝐹 ) | 
						
							| 19 | 15 17 18 | syl2anc | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  ℤ  ≈  ran  𝐹 ) | 
						
							| 20 |  | entr | ⊢ ( ( ω  ≈  ℤ  ∧  ℤ  ≈  ran  𝐹 )  →  ω  ≈  ran  𝐹 ) | 
						
							| 21 | 7 19 20 | sylancr | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  ω  ≈  ran  𝐹 ) | 
						
							| 22 |  | endom | ⊢ ( ω  ≈  ran  𝐹  →  ω  ≼  ran  𝐹 ) | 
						
							| 23 |  | domnsym | ⊢ ( ω  ≼  ran  𝐹  →  ¬  ran  𝐹  ≺  ω ) | 
						
							| 24 | 21 22 23 | 3syl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  ¬  ran  𝐹  ≺  ω ) | 
						
							| 25 |  | isfinite | ⊢ ( ran  𝐹  ∈  Fin  ↔  ran  𝐹  ≺  ω ) | 
						
							| 26 | 24 25 | sylnibr | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  ¬  ran  𝐹  ∈  Fin ) |