| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odinv.1 | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 2 |  | odinv.2 | ⊢ 𝐼  =  ( invg ‘ 𝐺 ) | 
						
							| 3 |  | odinv.3 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 4 |  | neg1z | ⊢ - 1  ∈  ℤ | 
						
							| 5 |  | eqid | ⊢ ( .g ‘ 𝐺 )  =  ( .g ‘ 𝐺 ) | 
						
							| 6 | 3 1 5 | odmulg | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  - 1  ∈  ℤ )  →  ( 𝑂 ‘ 𝐴 )  =  ( ( - 1  gcd  ( 𝑂 ‘ 𝐴 ) )  ·  ( 𝑂 ‘ ( - 1 ( .g ‘ 𝐺 ) 𝐴 ) ) ) ) | 
						
							| 7 | 4 6 | mp3an3 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑂 ‘ 𝐴 )  =  ( ( - 1  gcd  ( 𝑂 ‘ 𝐴 ) )  ·  ( 𝑂 ‘ ( - 1 ( .g ‘ 𝐺 ) 𝐴 ) ) ) ) | 
						
							| 8 | 3 1 | odcl | ⊢ ( 𝐴  ∈  𝑋  →  ( 𝑂 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑂 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 10 | 9 | nn0zd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑂 ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 11 |  | gcdcom | ⊢ ( ( - 1  ∈  ℤ  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℤ )  →  ( - 1  gcd  ( 𝑂 ‘ 𝐴 ) )  =  ( ( 𝑂 ‘ 𝐴 )  gcd  - 1 ) ) | 
						
							| 12 | 4 10 11 | sylancr | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( - 1  gcd  ( 𝑂 ‘ 𝐴 ) )  =  ( ( 𝑂 ‘ 𝐴 )  gcd  - 1 ) ) | 
						
							| 13 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 14 |  | gcdneg | ⊢ ( ( ( 𝑂 ‘ 𝐴 )  ∈  ℤ  ∧  1  ∈  ℤ )  →  ( ( 𝑂 ‘ 𝐴 )  gcd  - 1 )  =  ( ( 𝑂 ‘ 𝐴 )  gcd  1 ) ) | 
						
							| 15 | 10 13 14 | sylancl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑂 ‘ 𝐴 )  gcd  - 1 )  =  ( ( 𝑂 ‘ 𝐴 )  gcd  1 ) ) | 
						
							| 16 |  | gcd1 | ⊢ ( ( 𝑂 ‘ 𝐴 )  ∈  ℤ  →  ( ( 𝑂 ‘ 𝐴 )  gcd  1 )  =  1 ) | 
						
							| 17 | 10 16 | syl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑂 ‘ 𝐴 )  gcd  1 )  =  1 ) | 
						
							| 18 | 12 15 17 | 3eqtrd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( - 1  gcd  ( 𝑂 ‘ 𝐴 ) )  =  1 ) | 
						
							| 19 | 3 5 2 | mulgm1 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( - 1 ( .g ‘ 𝐺 ) 𝐴 )  =  ( 𝐼 ‘ 𝐴 ) ) | 
						
							| 20 | 19 | fveq2d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑂 ‘ ( - 1 ( .g ‘ 𝐺 ) 𝐴 ) )  =  ( 𝑂 ‘ ( 𝐼 ‘ 𝐴 ) ) ) | 
						
							| 21 | 18 20 | oveq12d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( ( - 1  gcd  ( 𝑂 ‘ 𝐴 ) )  ·  ( 𝑂 ‘ ( - 1 ( .g ‘ 𝐺 ) 𝐴 ) ) )  =  ( 1  ·  ( 𝑂 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ) | 
						
							| 22 | 3 2 | grpinvcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐼 ‘ 𝐴 )  ∈  𝑋 ) | 
						
							| 23 | 3 1 | odcl | ⊢ ( ( 𝐼 ‘ 𝐴 )  ∈  𝑋  →  ( 𝑂 ‘ ( 𝐼 ‘ 𝐴 ) )  ∈  ℕ0 ) | 
						
							| 24 | 22 23 | syl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑂 ‘ ( 𝐼 ‘ 𝐴 ) )  ∈  ℕ0 ) | 
						
							| 25 | 24 | nn0cnd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑂 ‘ ( 𝐼 ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 26 | 25 | mullidd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( 1  ·  ( 𝑂 ‘ ( 𝐼 ‘ 𝐴 ) ) )  =  ( 𝑂 ‘ ( 𝐼 ‘ 𝐴 ) ) ) | 
						
							| 27 | 7 21 26 | 3eqtrrd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑂 ‘ ( 𝐼 ‘ 𝐴 ) )  =  ( 𝑂 ‘ 𝐴 ) ) |