Step |
Hyp |
Ref |
Expression |
1 |
|
odinv.1 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
2 |
|
odinv.2 |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
3 |
|
odinv.3 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
4 |
|
neg1z |
⊢ - 1 ∈ ℤ |
5 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
6 |
3 1 5
|
odmulg |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ - 1 ∈ ℤ ) → ( 𝑂 ‘ 𝐴 ) = ( ( - 1 gcd ( 𝑂 ‘ 𝐴 ) ) · ( 𝑂 ‘ ( - 1 ( .g ‘ 𝐺 ) 𝐴 ) ) ) ) |
7 |
4 6
|
mp3an3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) = ( ( - 1 gcd ( 𝑂 ‘ 𝐴 ) ) · ( 𝑂 ‘ ( - 1 ( .g ‘ 𝐺 ) 𝐴 ) ) ) ) |
8 |
3 1
|
odcl |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
9 |
8
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
10 |
9
|
nn0zd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) |
11 |
|
gcdcom |
⊢ ( ( - 1 ∈ ℤ ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) → ( - 1 gcd ( 𝑂 ‘ 𝐴 ) ) = ( ( 𝑂 ‘ 𝐴 ) gcd - 1 ) ) |
12 |
4 10 11
|
sylancr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( - 1 gcd ( 𝑂 ‘ 𝐴 ) ) = ( ( 𝑂 ‘ 𝐴 ) gcd - 1 ) ) |
13 |
|
1z |
⊢ 1 ∈ ℤ |
14 |
|
gcdneg |
⊢ ( ( ( 𝑂 ‘ 𝐴 ) ∈ ℤ ∧ 1 ∈ ℤ ) → ( ( 𝑂 ‘ 𝐴 ) gcd - 1 ) = ( ( 𝑂 ‘ 𝐴 ) gcd 1 ) ) |
15 |
10 13 14
|
sylancl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) gcd - 1 ) = ( ( 𝑂 ‘ 𝐴 ) gcd 1 ) ) |
16 |
|
gcd1 |
⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℤ → ( ( 𝑂 ‘ 𝐴 ) gcd 1 ) = 1 ) |
17 |
10 16
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) gcd 1 ) = 1 ) |
18 |
12 15 17
|
3eqtrd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( - 1 gcd ( 𝑂 ‘ 𝐴 ) ) = 1 ) |
19 |
3 5 2
|
mulgm1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( - 1 ( .g ‘ 𝐺 ) 𝐴 ) = ( 𝐼 ‘ 𝐴 ) ) |
20 |
19
|
fveq2d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ ( - 1 ( .g ‘ 𝐺 ) 𝐴 ) ) = ( 𝑂 ‘ ( 𝐼 ‘ 𝐴 ) ) ) |
21 |
18 20
|
oveq12d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( - 1 gcd ( 𝑂 ‘ 𝐴 ) ) · ( 𝑂 ‘ ( - 1 ( .g ‘ 𝐺 ) 𝐴 ) ) ) = ( 1 · ( 𝑂 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ) |
22 |
3 2
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐼 ‘ 𝐴 ) ∈ 𝑋 ) |
23 |
3 1
|
odcl |
⊢ ( ( 𝐼 ‘ 𝐴 ) ∈ 𝑋 → ( 𝑂 ‘ ( 𝐼 ‘ 𝐴 ) ) ∈ ℕ0 ) |
24 |
22 23
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ ( 𝐼 ‘ 𝐴 ) ) ∈ ℕ0 ) |
25 |
24
|
nn0cnd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ ( 𝐼 ‘ 𝐴 ) ) ∈ ℂ ) |
26 |
25
|
mulid2d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 1 · ( 𝑂 ‘ ( 𝐼 ‘ 𝐴 ) ) ) = ( 𝑂 ‘ ( 𝐼 ‘ 𝐴 ) ) ) |
27 |
7 21 26
|
3eqtrrd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ ( 𝐼 ‘ 𝐴 ) ) = ( 𝑂 ‘ 𝐴 ) ) |