| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odval.1 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | odval.2 | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | odval.3 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 4 |  | odval.4 | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 5 |  | odval.i | ⊢ 𝐼  =  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } | 
						
							| 6 | 1 2 3 4 5 | odval | ⊢ ( 𝐴  ∈  𝑋  →  ( 𝑂 ‘ 𝐴 )  =  if ( 𝐼  =  ∅ ,  0 ,  inf ( 𝐼 ,  ℝ ,   <  ) ) ) | 
						
							| 7 |  | eqeq2 | ⊢ ( 0  =  if ( 𝐼  =  ∅ ,  0 ,  inf ( 𝐼 ,  ℝ ,   <  ) )  →  ( ( 𝑂 ‘ 𝐴 )  =  0  ↔  ( 𝑂 ‘ 𝐴 )  =  if ( 𝐼  =  ∅ ,  0 ,  inf ( 𝐼 ,  ℝ ,   <  ) ) ) ) | 
						
							| 8 | 7 | imbi1d | ⊢ ( 0  =  if ( 𝐼  =  ∅ ,  0 ,  inf ( 𝐼 ,  ℝ ,   <  ) )  →  ( ( ( 𝑂 ‘ 𝐴 )  =  0  →  ( ( ( 𝑂 ‘ 𝐴 )  =  0  ∧  𝐼  =  ∅ )  ∨  ( 𝑂 ‘ 𝐴 )  ∈  𝐼 ) )  ↔  ( ( 𝑂 ‘ 𝐴 )  =  if ( 𝐼  =  ∅ ,  0 ,  inf ( 𝐼 ,  ℝ ,   <  ) )  →  ( ( ( 𝑂 ‘ 𝐴 )  =  0  ∧  𝐼  =  ∅ )  ∨  ( 𝑂 ‘ 𝐴 )  ∈  𝐼 ) ) ) ) | 
						
							| 9 |  | eqeq2 | ⊢ ( inf ( 𝐼 ,  ℝ ,   <  )  =  if ( 𝐼  =  ∅ ,  0 ,  inf ( 𝐼 ,  ℝ ,   <  ) )  →  ( ( 𝑂 ‘ 𝐴 )  =  inf ( 𝐼 ,  ℝ ,   <  )  ↔  ( 𝑂 ‘ 𝐴 )  =  if ( 𝐼  =  ∅ ,  0 ,  inf ( 𝐼 ,  ℝ ,   <  ) ) ) ) | 
						
							| 10 | 9 | imbi1d | ⊢ ( inf ( 𝐼 ,  ℝ ,   <  )  =  if ( 𝐼  =  ∅ ,  0 ,  inf ( 𝐼 ,  ℝ ,   <  ) )  →  ( ( ( 𝑂 ‘ 𝐴 )  =  inf ( 𝐼 ,  ℝ ,   <  )  →  ( ( ( 𝑂 ‘ 𝐴 )  =  0  ∧  𝐼  =  ∅ )  ∨  ( 𝑂 ‘ 𝐴 )  ∈  𝐼 ) )  ↔  ( ( 𝑂 ‘ 𝐴 )  =  if ( 𝐼  =  ∅ ,  0 ,  inf ( 𝐼 ,  ℝ ,   <  ) )  →  ( ( ( 𝑂 ‘ 𝐴 )  =  0  ∧  𝐼  =  ∅ )  ∨  ( 𝑂 ‘ 𝐴 )  ∈  𝐼 ) ) ) ) | 
						
							| 11 |  | orc | ⊢ ( ( ( 𝑂 ‘ 𝐴 )  =  0  ∧  𝐼  =  ∅ )  →  ( ( ( 𝑂 ‘ 𝐴 )  =  0  ∧  𝐼  =  ∅ )  ∨  ( 𝑂 ‘ 𝐴 )  ∈  𝐼 ) ) | 
						
							| 12 | 11 | expcom | ⊢ ( 𝐼  =  ∅  →  ( ( 𝑂 ‘ 𝐴 )  =  0  →  ( ( ( 𝑂 ‘ 𝐴 )  =  0  ∧  𝐼  =  ∅ )  ∨  ( 𝑂 ‘ 𝐴 )  ∈  𝐼 ) ) ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐼  =  ∅ )  →  ( ( 𝑂 ‘ 𝐴 )  =  0  →  ( ( ( 𝑂 ‘ 𝐴 )  =  0  ∧  𝐼  =  ∅ )  ∨  ( 𝑂 ‘ 𝐴 )  ∈  𝐼 ) ) ) | 
						
							| 14 |  | ssrab2 | ⊢ { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  }  ⊆  ℕ | 
						
							| 15 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 16 | 15 | eqcomi | ⊢ ( ℤ≥ ‘ 1 )  =  ℕ | 
						
							| 17 | 14 5 16 | 3sstr4i | ⊢ 𝐼  ⊆  ( ℤ≥ ‘ 1 ) | 
						
							| 18 |  | neqne | ⊢ ( ¬  𝐼  =  ∅  →  𝐼  ≠  ∅ ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝐴  ∈  𝑋  ∧  ¬  𝐼  =  ∅ )  →  𝐼  ≠  ∅ ) | 
						
							| 20 |  | infssuzcl | ⊢ ( ( 𝐼  ⊆  ( ℤ≥ ‘ 1 )  ∧  𝐼  ≠  ∅ )  →  inf ( 𝐼 ,  ℝ ,   <  )  ∈  𝐼 ) | 
						
							| 21 | 17 19 20 | sylancr | ⊢ ( ( 𝐴  ∈  𝑋  ∧  ¬  𝐼  =  ∅ )  →  inf ( 𝐼 ,  ℝ ,   <  )  ∈  𝐼 ) | 
						
							| 22 |  | eleq1a | ⊢ ( inf ( 𝐼 ,  ℝ ,   <  )  ∈  𝐼  →  ( ( 𝑂 ‘ 𝐴 )  =  inf ( 𝐼 ,  ℝ ,   <  )  →  ( 𝑂 ‘ 𝐴 )  ∈  𝐼 ) ) | 
						
							| 23 | 21 22 | syl | ⊢ ( ( 𝐴  ∈  𝑋  ∧  ¬  𝐼  =  ∅ )  →  ( ( 𝑂 ‘ 𝐴 )  =  inf ( 𝐼 ,  ℝ ,   <  )  →  ( 𝑂 ‘ 𝐴 )  ∈  𝐼 ) ) | 
						
							| 24 |  | olc | ⊢ ( ( 𝑂 ‘ 𝐴 )  ∈  𝐼  →  ( ( ( 𝑂 ‘ 𝐴 )  =  0  ∧  𝐼  =  ∅ )  ∨  ( 𝑂 ‘ 𝐴 )  ∈  𝐼 ) ) | 
						
							| 25 | 23 24 | syl6 | ⊢ ( ( 𝐴  ∈  𝑋  ∧  ¬  𝐼  =  ∅ )  →  ( ( 𝑂 ‘ 𝐴 )  =  inf ( 𝐼 ,  ℝ ,   <  )  →  ( ( ( 𝑂 ‘ 𝐴 )  =  0  ∧  𝐼  =  ∅ )  ∨  ( 𝑂 ‘ 𝐴 )  ∈  𝐼 ) ) ) | 
						
							| 26 | 8 10 13 25 | ifbothda | ⊢ ( 𝐴  ∈  𝑋  →  ( ( 𝑂 ‘ 𝐴 )  =  if ( 𝐼  =  ∅ ,  0 ,  inf ( 𝐼 ,  ℝ ,   <  ) )  →  ( ( ( 𝑂 ‘ 𝐴 )  =  0  ∧  𝐼  =  ∅ )  ∨  ( 𝑂 ‘ 𝐴 )  ∈  𝐼 ) ) ) | 
						
							| 27 | 6 26 | mpd | ⊢ ( 𝐴  ∈  𝑋  →  ( ( ( 𝑂 ‘ 𝐴 )  =  0  ∧  𝐼  =  ∅ )  ∨  ( 𝑂 ‘ 𝐴 )  ∈  𝐼 ) ) |