Step |
Hyp |
Ref |
Expression |
1 |
|
odcl.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
odcl.2 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
3 |
|
odid.3 |
⊢ · = ( .g ‘ 𝐺 ) |
4 |
|
odid.4 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
5 |
|
oveq1 |
⊢ ( 𝑦 = 𝑁 → ( 𝑦 · 𝐴 ) = ( 𝑁 · 𝐴 ) ) |
6 |
5
|
eqeq1d |
⊢ ( 𝑦 = 𝑁 → ( ( 𝑦 · 𝐴 ) = 0 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
7 |
6
|
elrab |
⊢ ( 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ↔ ( 𝑁 ∈ ℕ ∧ ( 𝑁 · 𝐴 ) = 0 ) ) |
8 |
|
eqid |
⊢ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } = { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } |
9 |
1 3 4 2 8
|
odval |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) = if ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ) ) |
10 |
|
n0i |
⊢ ( 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } → ¬ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } = ∅ ) |
11 |
10
|
iffalsed |
⊢ ( 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } → if ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ) = inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ) |
12 |
9 11
|
sylan9eq |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) → ( 𝑂 ‘ 𝐴 ) = inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ) |
13 |
|
ssrab2 |
⊢ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ⊆ ℕ |
14 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
15 |
13 14
|
sseqtri |
⊢ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ⊆ ( ℤ≥ ‘ 1 ) |
16 |
|
ne0i |
⊢ ( 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } → { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ≠ ∅ ) |
17 |
16
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) → { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ≠ ∅ ) |
18 |
|
infssuzcl |
⊢ ( ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ⊆ ( ℤ≥ ‘ 1 ) ∧ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ≠ ∅ ) → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) |
19 |
15 17 18
|
sylancr |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) |
20 |
13 19
|
sselid |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ∈ ℕ ) |
21 |
|
infssuzle |
⊢ ( ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ≤ 𝑁 ) |
22 |
15 21
|
mpan |
⊢ ( 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ≤ 𝑁 ) |
23 |
22
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ≤ 𝑁 ) |
24 |
|
elrabi |
⊢ ( 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } → 𝑁 ∈ ℕ ) |
25 |
24
|
nnzd |
⊢ ( 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } → 𝑁 ∈ ℤ ) |
26 |
|
fznn |
⊢ ( 𝑁 ∈ ℤ → ( inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ∈ ( 1 ... 𝑁 ) ↔ ( inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ∈ ℕ ∧ inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ≤ 𝑁 ) ) ) |
27 |
25 26
|
syl |
⊢ ( 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } → ( inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ∈ ( 1 ... 𝑁 ) ↔ ( inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ∈ ℕ ∧ inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ≤ 𝑁 ) ) ) |
28 |
27
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) → ( inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ∈ ( 1 ... 𝑁 ) ↔ ( inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ∈ ℕ ∧ inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ≤ 𝑁 ) ) ) |
29 |
20 23 28
|
mpbir2and |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ∈ ( 1 ... 𝑁 ) ) |
30 |
12 29
|
eqeltrd |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) → ( 𝑂 ‘ 𝐴 ) ∈ ( 1 ... 𝑁 ) ) |
31 |
7 30
|
sylan2br |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝑁 ∈ ℕ ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → ( 𝑂 ‘ 𝐴 ) ∈ ( 1 ... 𝑁 ) ) |
32 |
31
|
3impb |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ ∧ ( 𝑁 · 𝐴 ) = 0 ) → ( 𝑂 ‘ 𝐴 ) ∈ ( 1 ... 𝑁 ) ) |