| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odcl.1 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | odcl.2 | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 3 |  | odid.3 | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 4 |  | odid.4 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 5 |  | oveq1 | ⊢ ( 𝑦  =  𝑁  →  ( 𝑦  ·  𝐴 )  =  ( 𝑁  ·  𝐴 ) ) | 
						
							| 6 | 5 | eqeq1d | ⊢ ( 𝑦  =  𝑁  →  ( ( 𝑦  ·  𝐴 )  =   0   ↔  ( 𝑁  ·  𝐴 )  =   0  ) ) | 
						
							| 7 | 6 | elrab | ⊢ ( 𝑁  ∈  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  }  ↔  ( 𝑁  ∈  ℕ  ∧  ( 𝑁  ·  𝐴 )  =   0  ) ) | 
						
							| 8 |  | eqid | ⊢ { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  }  =  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } | 
						
							| 9 | 1 3 4 2 8 | odval | ⊢ ( 𝐴  ∈  𝑋  →  ( 𝑂 ‘ 𝐴 )  =  if ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  }  =  ∅ ,  0 ,  inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } ,  ℝ ,   <  ) ) ) | 
						
							| 10 |  | n0i | ⊢ ( 𝑁  ∈  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  }  →  ¬  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  }  =  ∅ ) | 
						
							| 11 | 10 | iffalsed | ⊢ ( 𝑁  ∈  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  }  →  if ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  }  =  ∅ ,  0 ,  inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } ,  ℝ ,   <  ) )  =  inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } ,  ℝ ,   <  ) ) | 
						
							| 12 | 9 11 | sylan9eq | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝑁  ∈  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } )  →  ( 𝑂 ‘ 𝐴 )  =  inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } ,  ℝ ,   <  ) ) | 
						
							| 13 |  | ssrab2 | ⊢ { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  }  ⊆  ℕ | 
						
							| 14 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 15 | 13 14 | sseqtri | ⊢ { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  }  ⊆  ( ℤ≥ ‘ 1 ) | 
						
							| 16 |  | ne0i | ⊢ ( 𝑁  ∈  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  }  →  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  }  ≠  ∅ ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝑁  ∈  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } )  →  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  }  ≠  ∅ ) | 
						
							| 18 |  | infssuzcl | ⊢ ( ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  }  ⊆  ( ℤ≥ ‘ 1 )  ∧  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  }  ≠  ∅ )  →  inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } ,  ℝ ,   <  )  ∈  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } ) | 
						
							| 19 | 15 17 18 | sylancr | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝑁  ∈  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } )  →  inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } ,  ℝ ,   <  )  ∈  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } ) | 
						
							| 20 | 13 19 | sselid | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝑁  ∈  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } )  →  inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } ,  ℝ ,   <  )  ∈  ℕ ) | 
						
							| 21 |  | infssuzle | ⊢ ( ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  }  ⊆  ( ℤ≥ ‘ 1 )  ∧  𝑁  ∈  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } )  →  inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } ,  ℝ ,   <  )  ≤  𝑁 ) | 
						
							| 22 | 15 21 | mpan | ⊢ ( 𝑁  ∈  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  }  →  inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } ,  ℝ ,   <  )  ≤  𝑁 ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝑁  ∈  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } )  →  inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } ,  ℝ ,   <  )  ≤  𝑁 ) | 
						
							| 24 |  | elrabi | ⊢ ( 𝑁  ∈  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  }  →  𝑁  ∈  ℕ ) | 
						
							| 25 | 24 | nnzd | ⊢ ( 𝑁  ∈  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  }  →  𝑁  ∈  ℤ ) | 
						
							| 26 |  | fznn | ⊢ ( 𝑁  ∈  ℤ  →  ( inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } ,  ℝ ,   <  )  ∈  ( 1 ... 𝑁 )  ↔  ( inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } ,  ℝ ,   <  )  ∈  ℕ  ∧  inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } ,  ℝ ,   <  )  ≤  𝑁 ) ) ) | 
						
							| 27 | 25 26 | syl | ⊢ ( 𝑁  ∈  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  }  →  ( inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } ,  ℝ ,   <  )  ∈  ( 1 ... 𝑁 )  ↔  ( inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } ,  ℝ ,   <  )  ∈  ℕ  ∧  inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } ,  ℝ ,   <  )  ≤  𝑁 ) ) ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝑁  ∈  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } )  →  ( inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } ,  ℝ ,   <  )  ∈  ( 1 ... 𝑁 )  ↔  ( inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } ,  ℝ ,   <  )  ∈  ℕ  ∧  inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } ,  ℝ ,   <  )  ≤  𝑁 ) ) ) | 
						
							| 29 | 20 23 28 | mpbir2and | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝑁  ∈  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } )  →  inf ( { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } ,  ℝ ,   <  )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 30 | 12 29 | eqeltrd | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝑁  ∈  { 𝑦  ∈  ℕ  ∣  ( 𝑦  ·  𝐴 )  =   0  } )  →  ( 𝑂 ‘ 𝐴 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 31 | 7 30 | sylan2br | ⊢ ( ( 𝐴  ∈  𝑋  ∧  ( 𝑁  ∈  ℕ  ∧  ( 𝑁  ·  𝐴 )  =   0  ) )  →  ( 𝑂 ‘ 𝐴 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 32 | 31 | 3impb | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ  ∧  ( 𝑁  ·  𝐴 )  =   0  )  →  ( 𝑂 ‘ 𝐴 )  ∈  ( 1 ... 𝑁 ) ) |