| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odm1inv.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | odm1inv.o | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 3 |  | odm1inv.t | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 4 |  | odm1inv.i | ⊢ 𝐼  =  ( invg ‘ 𝐺 ) | 
						
							| 5 |  | odm1inv.g | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 6 |  | odm1inv.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 7 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 8 | 1 2 3 7 | odid | ⊢ ( 𝐴  ∈  𝑋  →  ( ( 𝑂 ‘ 𝐴 )  ·  𝐴 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 9 | 6 8 | syl | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ 𝐴 )  ·  𝐴 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 10 | 1 3 | mulg1 | ⊢ ( 𝐴  ∈  𝑋  →  ( 1  ·  𝐴 )  =  𝐴 ) | 
						
							| 11 | 6 10 | syl | ⊢ ( 𝜑  →  ( 1  ·  𝐴 )  =  𝐴 ) | 
						
							| 12 | 9 11 | oveq12d | ⊢ ( 𝜑  →  ( ( ( 𝑂 ‘ 𝐴 )  ·  𝐴 ) ( -g ‘ 𝐺 ) ( 1  ·  𝐴 ) )  =  ( ( 0g ‘ 𝐺 ) ( -g ‘ 𝐺 ) 𝐴 ) ) | 
						
							| 13 | 1 2 6 | odcld | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 14 | 13 | nn0zd | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 15 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 16 |  | eqid | ⊢ ( -g ‘ 𝐺 )  =  ( -g ‘ 𝐺 ) | 
						
							| 17 | 1 3 16 | mulgsubdir | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( 𝑂 ‘ 𝐴 )  ∈  ℤ  ∧  1  ∈  ℤ  ∧  𝐴  ∈  𝑋 ) )  →  ( ( ( 𝑂 ‘ 𝐴 )  −  1 )  ·  𝐴 )  =  ( ( ( 𝑂 ‘ 𝐴 )  ·  𝐴 ) ( -g ‘ 𝐺 ) ( 1  ·  𝐴 ) ) ) | 
						
							| 18 | 5 14 15 6 17 | syl13anc | ⊢ ( 𝜑  →  ( ( ( 𝑂 ‘ 𝐴 )  −  1 )  ·  𝐴 )  =  ( ( ( 𝑂 ‘ 𝐴 )  ·  𝐴 ) ( -g ‘ 𝐺 ) ( 1  ·  𝐴 ) ) ) | 
						
							| 19 | 1 16 4 7 | grpinvval2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐼 ‘ 𝐴 )  =  ( ( 0g ‘ 𝐺 ) ( -g ‘ 𝐺 ) 𝐴 ) ) | 
						
							| 20 | 5 6 19 | syl2anc | ⊢ ( 𝜑  →  ( 𝐼 ‘ 𝐴 )  =  ( ( 0g ‘ 𝐺 ) ( -g ‘ 𝐺 ) 𝐴 ) ) | 
						
							| 21 | 12 18 20 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( ( 𝑂 ‘ 𝐴 )  −  1 )  ·  𝐴 )  =  ( 𝐼 ‘ 𝐴 ) ) |