Step |
Hyp |
Ref |
Expression |
1 |
|
odm1inv.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
odm1inv.o |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
3 |
|
odm1inv.t |
⊢ · = ( .g ‘ 𝐺 ) |
4 |
|
odm1inv.i |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
5 |
|
odm1inv.g |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
6 |
|
odm1inv.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
7 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
8 |
1 2 3 7
|
odid |
⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
9 |
6 8
|
syl |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
10 |
1 3
|
mulg1 |
⊢ ( 𝐴 ∈ 𝑋 → ( 1 · 𝐴 ) = 𝐴 ) |
11 |
6 10
|
syl |
⊢ ( 𝜑 → ( 1 · 𝐴 ) = 𝐴 ) |
12 |
9 11
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) ( -g ‘ 𝐺 ) ( 1 · 𝐴 ) ) = ( ( 0g ‘ 𝐺 ) ( -g ‘ 𝐺 ) 𝐴 ) ) |
13 |
1 2 6
|
odcld |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
14 |
13
|
nn0zd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) |
15 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
16 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
17 |
1 3 16
|
mulgsubdir |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑂 ‘ 𝐴 ) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( ( 𝑂 ‘ 𝐴 ) − 1 ) · 𝐴 ) = ( ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) ( -g ‘ 𝐺 ) ( 1 · 𝐴 ) ) ) |
18 |
5 14 15 6 17
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 𝑂 ‘ 𝐴 ) − 1 ) · 𝐴 ) = ( ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) ( -g ‘ 𝐺 ) ( 1 · 𝐴 ) ) ) |
19 |
1 16 4 7
|
grpinvval2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐼 ‘ 𝐴 ) = ( ( 0g ‘ 𝐺 ) ( -g ‘ 𝐺 ) 𝐴 ) ) |
20 |
5 6 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝐴 ) = ( ( 0g ‘ 𝐺 ) ( -g ‘ 𝐺 ) 𝐴 ) ) |
21 |
12 18 20
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝑂 ‘ 𝐴 ) − 1 ) · 𝐴 ) = ( 𝐼 ‘ 𝐴 ) ) |