Metamath Proof Explorer


Theorem odm1inv

Description: The (order-1)th multiple of an element is its inverse. (Contributed by SN, 31-Jan-2025)

Ref Expression
Hypotheses odm1inv.x 𝑋 = ( Base ‘ 𝐺 )
odm1inv.o 𝑂 = ( od ‘ 𝐺 )
odm1inv.t · = ( .g𝐺 )
odm1inv.i 𝐼 = ( invg𝐺 )
odm1inv.g ( 𝜑𝐺 ∈ Grp )
odm1inv.1 ( 𝜑𝐴𝑋 )
Assertion odm1inv ( 𝜑 → ( ( ( 𝑂𝐴 ) − 1 ) · 𝐴 ) = ( 𝐼𝐴 ) )

Proof

Step Hyp Ref Expression
1 odm1inv.x 𝑋 = ( Base ‘ 𝐺 )
2 odm1inv.o 𝑂 = ( od ‘ 𝐺 )
3 odm1inv.t · = ( .g𝐺 )
4 odm1inv.i 𝐼 = ( invg𝐺 )
5 odm1inv.g ( 𝜑𝐺 ∈ Grp )
6 odm1inv.1 ( 𝜑𝐴𝑋 )
7 eqid ( 0g𝐺 ) = ( 0g𝐺 )
8 1 2 3 7 odid ( 𝐴𝑋 → ( ( 𝑂𝐴 ) · 𝐴 ) = ( 0g𝐺 ) )
9 6 8 syl ( 𝜑 → ( ( 𝑂𝐴 ) · 𝐴 ) = ( 0g𝐺 ) )
10 1 3 mulg1 ( 𝐴𝑋 → ( 1 · 𝐴 ) = 𝐴 )
11 6 10 syl ( 𝜑 → ( 1 · 𝐴 ) = 𝐴 )
12 9 11 oveq12d ( 𝜑 → ( ( ( 𝑂𝐴 ) · 𝐴 ) ( -g𝐺 ) ( 1 · 𝐴 ) ) = ( ( 0g𝐺 ) ( -g𝐺 ) 𝐴 ) )
13 1 2 6 odcld ( 𝜑 → ( 𝑂𝐴 ) ∈ ℕ0 )
14 13 nn0zd ( 𝜑 → ( 𝑂𝐴 ) ∈ ℤ )
15 1zzd ( 𝜑 → 1 ∈ ℤ )
16 eqid ( -g𝐺 ) = ( -g𝐺 )
17 1 3 16 mulgsubdir ( ( 𝐺 ∈ Grp ∧ ( ( 𝑂𝐴 ) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝐴𝑋 ) ) → ( ( ( 𝑂𝐴 ) − 1 ) · 𝐴 ) = ( ( ( 𝑂𝐴 ) · 𝐴 ) ( -g𝐺 ) ( 1 · 𝐴 ) ) )
18 5 14 15 6 17 syl13anc ( 𝜑 → ( ( ( 𝑂𝐴 ) − 1 ) · 𝐴 ) = ( ( ( 𝑂𝐴 ) · 𝐴 ) ( -g𝐺 ) ( 1 · 𝐴 ) ) )
19 1 16 4 7 grpinvval2 ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( 𝐼𝐴 ) = ( ( 0g𝐺 ) ( -g𝐺 ) 𝐴 ) )
20 5 6 19 syl2anc ( 𝜑 → ( 𝐼𝐴 ) = ( ( 0g𝐺 ) ( -g𝐺 ) 𝐴 ) )
21 12 18 20 3eqtr4d ( 𝜑 → ( ( ( 𝑂𝐴 ) − 1 ) · 𝐴 ) = ( 𝐼𝐴 ) )