| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odcl.1 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | odcl.2 | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 3 |  | odid.3 | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 4 |  | odid.4 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 5 |  | simpl1 | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  𝐺  ∈  Mnd ) | 
						
							| 6 |  | nnnn0 | ⊢ ( ( 𝑂 ‘ 𝐴 )  ∈  ℕ  →  ( 𝑂 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑂 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 8 |  | simpl3 | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  𝑁  ∈  ℕ0 ) | 
						
							| 9 | 8 | nn0red | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  𝑁  ∈  ℝ ) | 
						
							| 10 |  | nnrp | ⊢ ( ( 𝑂 ‘ 𝐴 )  ∈  ℕ  →  ( 𝑂 ‘ 𝐴 )  ∈  ℝ+ ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑂 ‘ 𝐴 )  ∈  ℝ+ ) | 
						
							| 12 | 9 11 | rerpdivcld | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 13 | 8 | nn0ge0d | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  0  ≤  𝑁 ) | 
						
							| 14 |  | nnre | ⊢ ( ( 𝑂 ‘ 𝐴 )  ∈  ℕ  →  ( 𝑂 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑂 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 16 |  | nngt0 | ⊢ ( ( 𝑂 ‘ 𝐴 )  ∈  ℕ  →  0  <  ( 𝑂 ‘ 𝐴 ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  0  <  ( 𝑂 ‘ 𝐴 ) ) | 
						
							| 18 |  | divge0 | ⊢ ( ( ( 𝑁  ∈  ℝ  ∧  0  ≤  𝑁 )  ∧  ( ( 𝑂 ‘ 𝐴 )  ∈  ℝ  ∧  0  <  ( 𝑂 ‘ 𝐴 ) ) )  →  0  ≤  ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) ) | 
						
							| 19 | 9 13 15 17 18 | syl22anc | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  0  ≤  ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) ) | 
						
							| 20 |  | flge0nn0 | ⊢ ( ( ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) )  ∈  ℝ  ∧  0  ≤  ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) )  →  ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) )  ∈  ℕ0 ) | 
						
							| 21 | 12 19 20 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) )  ∈  ℕ0 ) | 
						
							| 22 | 7 21 | nn0mulcld | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( 𝑂 ‘ 𝐴 )  ·  ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) ) )  ∈  ℕ0 ) | 
						
							| 23 | 8 | nn0zd | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  𝑁  ∈  ℤ ) | 
						
							| 24 |  | zmodcl | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ∈  ℕ0 ) | 
						
							| 25 | 23 24 | sylancom | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ∈  ℕ0 ) | 
						
							| 26 |  | simpl2 | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  𝐴  ∈  𝑋 ) | 
						
							| 27 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 28 | 1 3 27 | mulgnn0dir | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) ) )  ∈  ℕ0  ∧  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ∈  ℕ0  ∧  𝐴  ∈  𝑋 ) )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) ) )  +  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) ) )  ·  𝐴 )  =  ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) ) )  ·  𝐴 ) ( +g ‘ 𝐺 ) ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 ) ) ) | 
						
							| 29 | 5 22 25 26 28 | syl13anc | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) ) )  +  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) ) )  ·  𝐴 )  =  ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) ) )  ·  𝐴 ) ( +g ‘ 𝐺 ) ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 ) ) ) | 
						
							| 30 | 15 | recnd | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑂 ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 31 | 21 | nn0cnd | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) )  ∈  ℂ ) | 
						
							| 32 | 30 31 | mulcomd | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( 𝑂 ‘ 𝐴 )  ·  ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) ) )  =  ( ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ) | 
						
							| 33 | 32 | oveq1d | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) ) )  ·  𝐴 )  =  ( ( ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) )  ·  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 ) ) | 
						
							| 34 | 1 3 | mulgnn0ass | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) )  ∈  ℕ0  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ0  ∧  𝐴  ∈  𝑋 ) )  →  ( ( ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) )  ·  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 )  =  ( ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  ·  𝐴 ) ) ) | 
						
							| 35 | 5 21 7 26 34 | syl13anc | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) )  ·  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 )  =  ( ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  ·  𝐴 ) ) ) | 
						
							| 36 | 1 2 3 4 | odid | ⊢ ( 𝐴  ∈  𝑋  →  ( ( 𝑂 ‘ 𝐴 )  ·  𝐴 )  =   0  ) | 
						
							| 37 | 26 36 | syl | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( 𝑂 ‘ 𝐴 )  ·  𝐴 )  =   0  ) | 
						
							| 38 | 37 | oveq2d | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  ·  𝐴 ) )  =  ( ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) )  ·   0  ) ) | 
						
							| 39 | 1 3 4 | mulgnn0z | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) )  ∈  ℕ0 )  →  ( ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) )  ·   0  )  =   0  ) | 
						
							| 40 | 5 21 39 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) )  ·   0  )  =   0  ) | 
						
							| 41 | 38 40 | eqtrd | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  ·  𝐴 ) )  =   0  ) | 
						
							| 42 | 35 41 | eqtrd | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) )  ·  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 )  =   0  ) | 
						
							| 43 | 33 42 | eqtrd | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) ) )  ·  𝐴 )  =   0  ) | 
						
							| 44 | 43 | oveq1d | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) ) )  ·  𝐴 ) ( +g ‘ 𝐺 ) ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 ) )  =  (  0  ( +g ‘ 𝐺 ) ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 ) ) ) | 
						
							| 45 | 29 44 | eqtrd | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) ) )  +  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) ) )  ·  𝐴 )  =  (  0  ( +g ‘ 𝐺 ) ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 ) ) ) | 
						
							| 46 |  | modval | ⊢ ( ( 𝑁  ∈  ℝ  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℝ+ )  →  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  =  ( 𝑁  −  ( ( 𝑂 ‘ 𝐴 )  ·  ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 47 | 9 11 46 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  =  ( 𝑁  −  ( ( 𝑂 ‘ 𝐴 )  ·  ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 48 | 47 | oveq2d | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) ) )  +  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) ) )  =  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) ) )  +  ( 𝑁  −  ( ( 𝑂 ‘ 𝐴 )  ·  ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) ) ) ) ) ) | 
						
							| 49 | 22 | nn0cnd | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( 𝑂 ‘ 𝐴 )  ·  ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) ) )  ∈  ℂ ) | 
						
							| 50 | 8 | nn0cnd | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  𝑁  ∈  ℂ ) | 
						
							| 51 | 49 50 | pncan3d | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) ) )  +  ( 𝑁  −  ( ( 𝑂 ‘ 𝐴 )  ·  ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) ) ) ) )  =  𝑁 ) | 
						
							| 52 | 48 51 | eqtrd | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) ) )  +  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) ) )  =  𝑁 ) | 
						
							| 53 | 52 | oveq1d | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( ⌊ ‘ ( 𝑁  /  ( 𝑂 ‘ 𝐴 ) ) ) )  +  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) ) )  ·  𝐴 )  =  ( 𝑁  ·  𝐴 ) ) | 
						
							| 54 | 1 3 5 25 26 | mulgnn0cld | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 )  ∈  𝑋 ) | 
						
							| 55 | 1 27 4 | mndlid | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 )  ∈  𝑋 )  →  (  0  ( +g ‘ 𝐺 ) ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 ) )  =  ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 ) ) | 
						
							| 56 | 5 54 55 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  (  0  ( +g ‘ 𝐺 ) ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 ) )  =  ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 ) ) | 
						
							| 57 | 45 53 56 | 3eqtr3rd | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 )  =  ( 𝑁  ·  𝐴 ) ) |