Metamath Proof Explorer


Theorem odmulg2

Description: The order of a multiple divides the order of the base point. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses odmulgid.1 𝑋 = ( Base ‘ 𝐺 )
odmulgid.2 𝑂 = ( od ‘ 𝐺 )
odmulgid.3 · = ( .g𝐺 )
Assertion odmulg2 ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ ) → ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ∥ ( 𝑂𝐴 ) )

Proof

Step Hyp Ref Expression
1 odmulgid.1 𝑋 = ( Base ‘ 𝐺 )
2 odmulgid.2 𝑂 = ( od ‘ 𝐺 )
3 odmulgid.3 · = ( .g𝐺 )
4 1 2 odcl ( 𝐴𝑋 → ( 𝑂𝐴 ) ∈ ℕ0 )
5 4 nn0zd ( 𝐴𝑋 → ( 𝑂𝐴 ) ∈ ℤ )
6 5 3ad2ant2 ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ ) → ( 𝑂𝐴 ) ∈ ℤ )
7 simp3 ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ )
8 dvdsmul1 ( ( ( 𝑂𝐴 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑂𝐴 ) ∥ ( ( 𝑂𝐴 ) · 𝑁 ) )
9 6 7 8 syl2anc ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ ) → ( 𝑂𝐴 ) ∥ ( ( 𝑂𝐴 ) · 𝑁 ) )
10 1 2 3 odmulgid ( ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ ) ∧ ( 𝑂𝐴 ) ∈ ℤ ) → ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ∥ ( 𝑂𝐴 ) ↔ ( 𝑂𝐴 ) ∥ ( ( 𝑂𝐴 ) · 𝑁 ) ) )
11 6 10 mpdan ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ ) → ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ∥ ( 𝑂𝐴 ) ↔ ( 𝑂𝐴 ) ∥ ( ( 𝑂𝐴 ) · 𝑁 ) ) )
12 9 11 mpbird ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ ) → ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ∥ ( 𝑂𝐴 ) )