| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odmulgid.1 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | odmulgid.2 | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 3 |  | odmulgid.3 | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 4 | 1 2 | odcl | ⊢ ( 𝐴  ∈  𝑋  →  ( 𝑂 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 5 | 4 | nn0zd | ⊢ ( 𝐴  ∈  𝑋  →  ( 𝑂 ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 6 | 5 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  →  ( 𝑂 ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 7 |  | simp3 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  →  𝑁  ∈  ℤ ) | 
						
							| 8 |  | dvdsmul1 | ⊢ ( ( ( 𝑂 ‘ 𝐴 )  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑂 ‘ 𝐴 )  ∥  ( ( 𝑂 ‘ 𝐴 )  ·  𝑁 ) ) | 
						
							| 9 | 6 7 8 | syl2anc | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  →  ( 𝑂 ‘ 𝐴 )  ∥  ( ( 𝑂 ‘ 𝐴 )  ·  𝑁 ) ) | 
						
							| 10 | 1 2 3 | odmulgid | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℤ )  →  ( ( 𝑂 ‘ ( 𝑁  ·  𝐴 ) )  ∥  ( 𝑂 ‘ 𝐴 )  ↔  ( 𝑂 ‘ 𝐴 )  ∥  ( ( 𝑂 ‘ 𝐴 )  ·  𝑁 ) ) ) | 
						
							| 11 | 6 10 | mpdan | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑂 ‘ ( 𝑁  ·  𝐴 ) )  ∥  ( 𝑂 ‘ 𝐴 )  ↔  ( 𝑂 ‘ 𝐴 )  ∥  ( ( 𝑂 ‘ 𝐴 )  ·  𝑁 ) ) ) | 
						
							| 12 | 9 11 | mpbird | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  →  ( 𝑂 ‘ ( 𝑁  ·  𝐴 ) )  ∥  ( 𝑂 ‘ 𝐴 ) ) |