Step |
Hyp |
Ref |
Expression |
1 |
|
odmulgid.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
odmulgid.2 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
3 |
|
odmulgid.3 |
⊢ · = ( .g ‘ 𝐺 ) |
4 |
1 2
|
odcl |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
5 |
4
|
nn0zd |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) |
6 |
5
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) |
7 |
|
simp3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
8 |
|
dvdsmul1 |
⊢ ( ( ( 𝑂 ‘ 𝐴 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ 𝐴 ) · 𝑁 ) ) |
9 |
6 7 8
|
syl2anc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ 𝐴 ) · 𝑁 ) ) |
10 |
1 2 3
|
odmulgid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) → ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ↔ ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ 𝐴 ) · 𝑁 ) ) ) |
11 |
6 10
|
mpdan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ↔ ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ 𝐴 ) · 𝑁 ) ) ) |
12 |
9 11
|
mpbird |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ) |