Step |
Hyp |
Ref |
Expression |
1 |
|
oduval.d |
⊢ 𝐷 = ( ODual ‘ 𝑂 ) |
2 |
|
odubas.b |
⊢ 𝐵 = ( Base ‘ 𝑂 ) |
3 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
4 |
|
1re |
⊢ 1 ∈ ℝ |
5 |
|
1lt10 |
⊢ 1 < ; 1 0 |
6 |
4 5
|
ltneii |
⊢ 1 ≠ ; 1 0 |
7 |
|
basendx |
⊢ ( Base ‘ ndx ) = 1 |
8 |
|
plendx |
⊢ ( le ‘ ndx ) = ; 1 0 |
9 |
7 8
|
neeq12i |
⊢ ( ( Base ‘ ndx ) ≠ ( le ‘ ndx ) ↔ 1 ≠ ; 1 0 ) |
10 |
6 9
|
mpbir |
⊢ ( Base ‘ ndx ) ≠ ( le ‘ ndx ) |
11 |
3 10
|
setsnid |
⊢ ( Base ‘ 𝑂 ) = ( Base ‘ ( 𝑂 sSet 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑂 ) 〉 ) ) |
12 |
|
eqid |
⊢ ( le ‘ 𝑂 ) = ( le ‘ 𝑂 ) |
13 |
1 12
|
oduval |
⊢ 𝐷 = ( 𝑂 sSet 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑂 ) 〉 ) |
14 |
13
|
fveq2i |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ ( 𝑂 sSet 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑂 ) 〉 ) ) |
15 |
11 2 14
|
3eqtr4i |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |