| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oduval.d |
⊢ 𝐷 = ( ODual ‘ 𝑂 ) |
| 2 |
|
odubas.b |
⊢ 𝐵 = ( Base ‘ 𝑂 ) |
| 3 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
| 4 |
|
plendxnbasendx |
⊢ ( le ‘ ndx ) ≠ ( Base ‘ ndx ) |
| 5 |
4
|
necomi |
⊢ ( Base ‘ ndx ) ≠ ( le ‘ ndx ) |
| 6 |
3 5
|
setsnid |
⊢ ( Base ‘ 𝑂 ) = ( Base ‘ ( 𝑂 sSet 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑂 ) 〉 ) ) |
| 7 |
|
eqid |
⊢ ( le ‘ 𝑂 ) = ( le ‘ 𝑂 ) |
| 8 |
1 7
|
oduval |
⊢ 𝐷 = ( 𝑂 sSet 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑂 ) 〉 ) |
| 9 |
8
|
fveq2i |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ ( 𝑂 sSet 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑂 ) 〉 ) ) |
| 10 |
6 2 9
|
3eqtr4i |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |