Metamath Proof Explorer


Theorem odubas

Description: Base set of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Hypotheses oduval.d 𝐷 = ( ODual ‘ 𝑂 )
odubas.b 𝐵 = ( Base ‘ 𝑂 )
Assertion odubas 𝐵 = ( Base ‘ 𝐷 )

Proof

Step Hyp Ref Expression
1 oduval.d 𝐷 = ( ODual ‘ 𝑂 )
2 odubas.b 𝐵 = ( Base ‘ 𝑂 )
3 baseid Base = Slot ( Base ‘ ndx )
4 1re 1 ∈ ℝ
5 1lt10 1 < 1 0
6 4 5 ltneii 1 ≠ 1 0
7 basendx ( Base ‘ ndx ) = 1
8 plendx ( le ‘ ndx ) = 1 0
9 7 8 neeq12i ( ( Base ‘ ndx ) ≠ ( le ‘ ndx ) ↔ 1 ≠ 1 0 )
10 6 9 mpbir ( Base ‘ ndx ) ≠ ( le ‘ ndx )
11 3 10 setsnid ( Base ‘ 𝑂 ) = ( Base ‘ ( 𝑂 sSet ⟨ ( le ‘ ndx ) , ( le ‘ 𝑂 ) ⟩ ) )
12 eqid ( le ‘ 𝑂 ) = ( le ‘ 𝑂 )
13 1 12 oduval 𝐷 = ( 𝑂 sSet ⟨ ( le ‘ ndx ) , ( le ‘ 𝑂 ) ⟩ )
14 13 fveq2i ( Base ‘ 𝐷 ) = ( Base ‘ ( 𝑂 sSet ⟨ ( le ‘ ndx ) , ( le ‘ 𝑂 ) ⟩ ) )
15 11 2 14 3eqtr4i 𝐵 = ( Base ‘ 𝐷 )