Step |
Hyp |
Ref |
Expression |
1 |
|
oduclatb.d |
⊢ 𝐷 = ( ODual ‘ 𝑂 ) |
2 |
|
elex |
⊢ ( 𝑂 ∈ CLat → 𝑂 ∈ V ) |
3 |
|
noel |
⊢ ¬ ( ( lub ‘ ∅ ) ‘ ∅ ) ∈ ∅ |
4 |
|
ssid |
⊢ ∅ ⊆ ∅ |
5 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
6 |
|
eqid |
⊢ ( lub ‘ ∅ ) = ( lub ‘ ∅ ) |
7 |
5 6
|
clatlubcl |
⊢ ( ( ∅ ∈ CLat ∧ ∅ ⊆ ∅ ) → ( ( lub ‘ ∅ ) ‘ ∅ ) ∈ ∅ ) |
8 |
4 7
|
mpan2 |
⊢ ( ∅ ∈ CLat → ( ( lub ‘ ∅ ) ‘ ∅ ) ∈ ∅ ) |
9 |
3 8
|
mto |
⊢ ¬ ∅ ∈ CLat |
10 |
|
fvprc |
⊢ ( ¬ 𝑂 ∈ V → ( ODual ‘ 𝑂 ) = ∅ ) |
11 |
1 10
|
eqtrid |
⊢ ( ¬ 𝑂 ∈ V → 𝐷 = ∅ ) |
12 |
11
|
eleq1d |
⊢ ( ¬ 𝑂 ∈ V → ( 𝐷 ∈ CLat ↔ ∅ ∈ CLat ) ) |
13 |
9 12
|
mtbiri |
⊢ ( ¬ 𝑂 ∈ V → ¬ 𝐷 ∈ CLat ) |
14 |
13
|
con4i |
⊢ ( 𝐷 ∈ CLat → 𝑂 ∈ V ) |
15 |
1
|
oduposb |
⊢ ( 𝑂 ∈ V → ( 𝑂 ∈ Poset ↔ 𝐷 ∈ Poset ) ) |
16 |
|
ancom |
⊢ ( ( dom ( lub ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ∧ dom ( glb ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ) ↔ ( dom ( glb ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ∧ dom ( lub ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ) ) |
17 |
|
eqid |
⊢ ( glb ‘ 𝑂 ) = ( glb ‘ 𝑂 ) |
18 |
1 17
|
odulub |
⊢ ( 𝑂 ∈ V → ( glb ‘ 𝑂 ) = ( lub ‘ 𝐷 ) ) |
19 |
18
|
dmeqd |
⊢ ( 𝑂 ∈ V → dom ( glb ‘ 𝑂 ) = dom ( lub ‘ 𝐷 ) ) |
20 |
19
|
eqeq1d |
⊢ ( 𝑂 ∈ V → ( dom ( glb ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ↔ dom ( lub ‘ 𝐷 ) = 𝒫 ( Base ‘ 𝑂 ) ) ) |
21 |
|
eqid |
⊢ ( lub ‘ 𝑂 ) = ( lub ‘ 𝑂 ) |
22 |
1 21
|
oduglb |
⊢ ( 𝑂 ∈ V → ( lub ‘ 𝑂 ) = ( glb ‘ 𝐷 ) ) |
23 |
22
|
dmeqd |
⊢ ( 𝑂 ∈ V → dom ( lub ‘ 𝑂 ) = dom ( glb ‘ 𝐷 ) ) |
24 |
23
|
eqeq1d |
⊢ ( 𝑂 ∈ V → ( dom ( lub ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ↔ dom ( glb ‘ 𝐷 ) = 𝒫 ( Base ‘ 𝑂 ) ) ) |
25 |
20 24
|
anbi12d |
⊢ ( 𝑂 ∈ V → ( ( dom ( glb ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ∧ dom ( lub ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ) ↔ ( dom ( lub ‘ 𝐷 ) = 𝒫 ( Base ‘ 𝑂 ) ∧ dom ( glb ‘ 𝐷 ) = 𝒫 ( Base ‘ 𝑂 ) ) ) ) |
26 |
16 25
|
syl5bb |
⊢ ( 𝑂 ∈ V → ( ( dom ( lub ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ∧ dom ( glb ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ) ↔ ( dom ( lub ‘ 𝐷 ) = 𝒫 ( Base ‘ 𝑂 ) ∧ dom ( glb ‘ 𝐷 ) = 𝒫 ( Base ‘ 𝑂 ) ) ) ) |
27 |
15 26
|
anbi12d |
⊢ ( 𝑂 ∈ V → ( ( 𝑂 ∈ Poset ∧ ( dom ( lub ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ∧ dom ( glb ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ) ) ↔ ( 𝐷 ∈ Poset ∧ ( dom ( lub ‘ 𝐷 ) = 𝒫 ( Base ‘ 𝑂 ) ∧ dom ( glb ‘ 𝐷 ) = 𝒫 ( Base ‘ 𝑂 ) ) ) ) ) |
28 |
|
eqid |
⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝑂 ) |
29 |
28 21 17
|
isclat |
⊢ ( 𝑂 ∈ CLat ↔ ( 𝑂 ∈ Poset ∧ ( dom ( lub ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ∧ dom ( glb ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ) ) ) |
30 |
1 28
|
odubas |
⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝐷 ) |
31 |
|
eqid |
⊢ ( lub ‘ 𝐷 ) = ( lub ‘ 𝐷 ) |
32 |
|
eqid |
⊢ ( glb ‘ 𝐷 ) = ( glb ‘ 𝐷 ) |
33 |
30 31 32
|
isclat |
⊢ ( 𝐷 ∈ CLat ↔ ( 𝐷 ∈ Poset ∧ ( dom ( lub ‘ 𝐷 ) = 𝒫 ( Base ‘ 𝑂 ) ∧ dom ( glb ‘ 𝐷 ) = 𝒫 ( Base ‘ 𝑂 ) ) ) ) |
34 |
27 29 33
|
3bitr4g |
⊢ ( 𝑂 ∈ V → ( 𝑂 ∈ CLat ↔ 𝐷 ∈ CLat ) ) |
35 |
2 14 34
|
pm5.21nii |
⊢ ( 𝑂 ∈ CLat ↔ 𝐷 ∈ CLat ) |