Metamath Proof Explorer
		
		
		
		Description:  Truth of the less-equal relation in an order dual structure.
         (Contributed by Stefan O'Rear, 29-Jan-2015)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | oduval.d | ⊢ 𝐷  =  ( ODual ‘ 𝑂 ) | 
					
						|  |  | oduval.l | ⊢  ≤   =  ( le ‘ 𝑂 ) | 
					
						|  |  | oduleg.g | ⊢ 𝐺  =  ( le ‘ 𝐷 ) | 
				
					|  | Assertion | oduleg | ⊢  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( 𝐴 𝐺 𝐵  ↔  𝐵  ≤  𝐴 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oduval.d | ⊢ 𝐷  =  ( ODual ‘ 𝑂 ) | 
						
							| 2 |  | oduval.l | ⊢  ≤   =  ( le ‘ 𝑂 ) | 
						
							| 3 |  | oduleg.g | ⊢ 𝐺  =  ( le ‘ 𝐷 ) | 
						
							| 4 | 1 2 | oduleval | ⊢ ◡  ≤   =  ( le ‘ 𝐷 ) | 
						
							| 5 | 3 4 | eqtr4i | ⊢ 𝐺  =  ◡  ≤ | 
						
							| 6 | 5 | breqi | ⊢ ( 𝐴 𝐺 𝐵  ↔  𝐴 ◡  ≤  𝐵 ) | 
						
							| 7 |  | brcnvg | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( 𝐴 ◡  ≤  𝐵  ↔  𝐵  ≤  𝐴 ) ) | 
						
							| 8 | 6 7 | bitrid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( 𝐴 𝐺 𝐵  ↔  𝐵  ≤  𝐴 ) ) |