Metamath Proof Explorer


Theorem oduleg

Description: Truth of the less-equal relation in an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Hypotheses oduval.d 𝐷 = ( ODual ‘ 𝑂 )
oduval.l = ( le ‘ 𝑂 )
oduleg.g 𝐺 = ( le ‘ 𝐷 )
Assertion oduleg ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 𝐺 𝐵𝐵 𝐴 ) )

Proof

Step Hyp Ref Expression
1 oduval.d 𝐷 = ( ODual ‘ 𝑂 )
2 oduval.l = ( le ‘ 𝑂 )
3 oduleg.g 𝐺 = ( le ‘ 𝐷 )
4 1 2 oduleval = ( le ‘ 𝐷 )
5 3 4 eqtr4i 𝐺 =
6 5 breqi ( 𝐴 𝐺 𝐵𝐴 𝐵 )
7 brcnvg ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 𝐵𝐵 𝐴 ) )
8 6 7 syl5bb ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 𝐺 𝐵𝐵 𝐴 ) )