Metamath Proof Explorer
Description: Truth of the less-equal relation in an order dual structure.
(Contributed by Stefan O'Rear, 29-Jan-2015)
|
|
Ref |
Expression |
|
Hypotheses |
oduval.d |
⊢ 𝐷 = ( ODual ‘ 𝑂 ) |
|
|
oduval.l |
⊢ ≤ = ( le ‘ 𝑂 ) |
|
|
oduleg.g |
⊢ 𝐺 = ( le ‘ 𝐷 ) |
|
Assertion |
oduleg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 𝐺 𝐵 ↔ 𝐵 ≤ 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
oduval.d |
⊢ 𝐷 = ( ODual ‘ 𝑂 ) |
2 |
|
oduval.l |
⊢ ≤ = ( le ‘ 𝑂 ) |
3 |
|
oduleg.g |
⊢ 𝐺 = ( le ‘ 𝐷 ) |
4 |
1 2
|
oduleval |
⊢ ◡ ≤ = ( le ‘ 𝐷 ) |
5 |
3 4
|
eqtr4i |
⊢ 𝐺 = ◡ ≤ |
6 |
5
|
breqi |
⊢ ( 𝐴 𝐺 𝐵 ↔ 𝐴 ◡ ≤ 𝐵 ) |
7 |
|
brcnvg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ◡ ≤ 𝐵 ↔ 𝐵 ≤ 𝐴 ) ) |
8 |
6 7
|
syl5bb |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 𝐺 𝐵 ↔ 𝐵 ≤ 𝐴 ) ) |