Metamath Proof Explorer


Theorem oduleval

Description: Value of the less-equal relation in an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Hypotheses oduval.d 𝐷 = ( ODual ‘ 𝑂 )
oduval.l = ( le ‘ 𝑂 )
Assertion oduleval = ( le ‘ 𝐷 )

Proof

Step Hyp Ref Expression
1 oduval.d 𝐷 = ( ODual ‘ 𝑂 )
2 oduval.l = ( le ‘ 𝑂 )
3 fvex ( le ‘ 𝑂 ) ∈ V
4 3 cnvex ( le ‘ 𝑂 ) ∈ V
5 pleid le = Slot ( le ‘ ndx )
6 5 setsid ( ( 𝑂 ∈ V ∧ ( le ‘ 𝑂 ) ∈ V ) → ( le ‘ 𝑂 ) = ( le ‘ ( 𝑂 sSet ⟨ ( le ‘ ndx ) , ( le ‘ 𝑂 ) ⟩ ) ) )
7 4 6 mpan2 ( 𝑂 ∈ V → ( le ‘ 𝑂 ) = ( le ‘ ( 𝑂 sSet ⟨ ( le ‘ ndx ) , ( le ‘ 𝑂 ) ⟩ ) ) )
8 5 str0 ∅ = ( le ‘ ∅ )
9 fvprc ( ¬ 𝑂 ∈ V → ( le ‘ 𝑂 ) = ∅ )
10 9 cnveqd ( ¬ 𝑂 ∈ V → ( le ‘ 𝑂 ) = ∅ )
11 cnv0 ∅ = ∅
12 10 11 eqtrdi ( ¬ 𝑂 ∈ V → ( le ‘ 𝑂 ) = ∅ )
13 reldmsets Rel dom sSet
14 13 ovprc1 ( ¬ 𝑂 ∈ V → ( 𝑂 sSet ⟨ ( le ‘ ndx ) , ( le ‘ 𝑂 ) ⟩ ) = ∅ )
15 14 fveq2d ( ¬ 𝑂 ∈ V → ( le ‘ ( 𝑂 sSet ⟨ ( le ‘ ndx ) , ( le ‘ 𝑂 ) ⟩ ) ) = ( le ‘ ∅ ) )
16 8 12 15 3eqtr4a ( ¬ 𝑂 ∈ V → ( le ‘ 𝑂 ) = ( le ‘ ( 𝑂 sSet ⟨ ( le ‘ ndx ) , ( le ‘ 𝑂 ) ⟩ ) ) )
17 7 16 pm2.61i ( le ‘ 𝑂 ) = ( le ‘ ( 𝑂 sSet ⟨ ( le ‘ ndx ) , ( le ‘ 𝑂 ) ⟩ ) )
18 2 cnveqi = ( le ‘ 𝑂 )
19 eqid ( le ‘ 𝑂 ) = ( le ‘ 𝑂 )
20 1 19 oduval 𝐷 = ( 𝑂 sSet ⟨ ( le ‘ ndx ) , ( le ‘ 𝑂 ) ⟩ )
21 20 fveq2i ( le ‘ 𝐷 ) = ( le ‘ ( 𝑂 sSet ⟨ ( le ‘ ndx ) , ( le ‘ 𝑂 ) ⟩ ) )
22 17 18 21 3eqtr4i = ( le ‘ 𝐷 )