Step |
Hyp |
Ref |
Expression |
1 |
|
oduglb.d |
⊢ 𝐷 = ( ODual ‘ 𝑂 ) |
2 |
|
odulub.l |
⊢ 𝐿 = ( glb ‘ 𝑂 ) |
3 |
|
vex |
⊢ 𝑐 ∈ V |
4 |
|
vex |
⊢ 𝑏 ∈ V |
5 |
3 4
|
brcnv |
⊢ ( 𝑐 ◡ ( le ‘ 𝑂 ) 𝑏 ↔ 𝑏 ( le ‘ 𝑂 ) 𝑐 ) |
6 |
5
|
ralbii |
⊢ ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑏 ↔ ∀ 𝑐 ∈ 𝑎 𝑏 ( le ‘ 𝑂 ) 𝑐 ) |
7 |
|
vex |
⊢ 𝑑 ∈ V |
8 |
3 7
|
brcnv |
⊢ ( 𝑐 ◡ ( le ‘ 𝑂 ) 𝑑 ↔ 𝑑 ( le ‘ 𝑂 ) 𝑐 ) |
9 |
8
|
ralbii |
⊢ ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑑 ↔ ∀ 𝑐 ∈ 𝑎 𝑑 ( le ‘ 𝑂 ) 𝑐 ) |
10 |
4 7
|
brcnv |
⊢ ( 𝑏 ◡ ( le ‘ 𝑂 ) 𝑑 ↔ 𝑑 ( le ‘ 𝑂 ) 𝑏 ) |
11 |
9 10
|
imbi12i |
⊢ ( ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑑 → 𝑏 ◡ ( le ‘ 𝑂 ) 𝑑 ) ↔ ( ∀ 𝑐 ∈ 𝑎 𝑑 ( le ‘ 𝑂 ) 𝑐 → 𝑑 ( le ‘ 𝑂 ) 𝑏 ) ) |
12 |
11
|
ralbii |
⊢ ( ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑑 → 𝑏 ◡ ( le ‘ 𝑂 ) 𝑑 ) ↔ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ( le ‘ 𝑂 ) 𝑐 → 𝑑 ( le ‘ 𝑂 ) 𝑏 ) ) |
13 |
6 12
|
anbi12i |
⊢ ( ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑑 → 𝑏 ◡ ( le ‘ 𝑂 ) 𝑑 ) ) ↔ ( ∀ 𝑐 ∈ 𝑎 𝑏 ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ( le ‘ 𝑂 ) 𝑐 → 𝑑 ( le ‘ 𝑂 ) 𝑏 ) ) ) |
14 |
13
|
a1i |
⊢ ( 𝑏 ∈ ( Base ‘ 𝑂 ) → ( ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑑 → 𝑏 ◡ ( le ‘ 𝑂 ) 𝑑 ) ) ↔ ( ∀ 𝑐 ∈ 𝑎 𝑏 ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ( le ‘ 𝑂 ) 𝑐 → 𝑑 ( le ‘ 𝑂 ) 𝑏 ) ) ) ) |
15 |
14
|
riotabiia |
⊢ ( ℩ 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑑 → 𝑏 ◡ ( le ‘ 𝑂 ) 𝑑 ) ) ) = ( ℩ 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑏 ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ( le ‘ 𝑂 ) 𝑐 → 𝑑 ( le ‘ 𝑂 ) 𝑏 ) ) ) |
16 |
15
|
mpteq2i |
⊢ ( 𝑎 ∈ 𝒫 ( Base ‘ 𝑂 ) ↦ ( ℩ 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑑 → 𝑏 ◡ ( le ‘ 𝑂 ) 𝑑 ) ) ) ) = ( 𝑎 ∈ 𝒫 ( Base ‘ 𝑂 ) ↦ ( ℩ 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑏 ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ( le ‘ 𝑂 ) 𝑐 → 𝑑 ( le ‘ 𝑂 ) 𝑏 ) ) ) ) |
17 |
13
|
reubii |
⊢ ( ∃! 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑑 → 𝑏 ◡ ( le ‘ 𝑂 ) 𝑑 ) ) ↔ ∃! 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑏 ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ( le ‘ 𝑂 ) 𝑐 → 𝑑 ( le ‘ 𝑂 ) 𝑏 ) ) ) |
18 |
17
|
abbii |
⊢ { 𝑎 ∣ ∃! 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑑 → 𝑏 ◡ ( le ‘ 𝑂 ) 𝑑 ) ) } = { 𝑎 ∣ ∃! 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑏 ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ( le ‘ 𝑂 ) 𝑐 → 𝑑 ( le ‘ 𝑂 ) 𝑏 ) ) } |
19 |
16 18
|
reseq12i |
⊢ ( ( 𝑎 ∈ 𝒫 ( Base ‘ 𝑂 ) ↦ ( ℩ 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑑 → 𝑏 ◡ ( le ‘ 𝑂 ) 𝑑 ) ) ) ) ↾ { 𝑎 ∣ ∃! 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑑 → 𝑏 ◡ ( le ‘ 𝑂 ) 𝑑 ) ) } ) = ( ( 𝑎 ∈ 𝒫 ( Base ‘ 𝑂 ) ↦ ( ℩ 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑏 ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ( le ‘ 𝑂 ) 𝑐 → 𝑑 ( le ‘ 𝑂 ) 𝑏 ) ) ) ) ↾ { 𝑎 ∣ ∃! 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑏 ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ( le ‘ 𝑂 ) 𝑐 → 𝑑 ( le ‘ 𝑂 ) 𝑏 ) ) } ) |
20 |
19
|
eqcomi |
⊢ ( ( 𝑎 ∈ 𝒫 ( Base ‘ 𝑂 ) ↦ ( ℩ 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑏 ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ( le ‘ 𝑂 ) 𝑐 → 𝑑 ( le ‘ 𝑂 ) 𝑏 ) ) ) ) ↾ { 𝑎 ∣ ∃! 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑏 ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ( le ‘ 𝑂 ) 𝑐 → 𝑑 ( le ‘ 𝑂 ) 𝑏 ) ) } ) = ( ( 𝑎 ∈ 𝒫 ( Base ‘ 𝑂 ) ↦ ( ℩ 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑑 → 𝑏 ◡ ( le ‘ 𝑂 ) 𝑑 ) ) ) ) ↾ { 𝑎 ∣ ∃! 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑑 → 𝑏 ◡ ( le ‘ 𝑂 ) 𝑑 ) ) } ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝑂 ) |
22 |
|
eqid |
⊢ ( le ‘ 𝑂 ) = ( le ‘ 𝑂 ) |
23 |
|
eqid |
⊢ ( glb ‘ 𝑂 ) = ( glb ‘ 𝑂 ) |
24 |
|
biid |
⊢ ( ( ∀ 𝑐 ∈ 𝑎 𝑏 ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ( le ‘ 𝑂 ) 𝑐 → 𝑑 ( le ‘ 𝑂 ) 𝑏 ) ) ↔ ( ∀ 𝑐 ∈ 𝑎 𝑏 ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ( le ‘ 𝑂 ) 𝑐 → 𝑑 ( le ‘ 𝑂 ) 𝑏 ) ) ) |
25 |
|
id |
⊢ ( 𝑂 ∈ 𝑉 → 𝑂 ∈ 𝑉 ) |
26 |
21 22 23 24 25
|
glbfval |
⊢ ( 𝑂 ∈ 𝑉 → ( glb ‘ 𝑂 ) = ( ( 𝑎 ∈ 𝒫 ( Base ‘ 𝑂 ) ↦ ( ℩ 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑏 ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ( le ‘ 𝑂 ) 𝑐 → 𝑑 ( le ‘ 𝑂 ) 𝑏 ) ) ) ) ↾ { 𝑎 ∣ ∃! 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑏 ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ( le ‘ 𝑂 ) 𝑐 → 𝑑 ( le ‘ 𝑂 ) 𝑏 ) ) } ) ) |
27 |
1
|
fvexi |
⊢ 𝐷 ∈ V |
28 |
1 21
|
odubas |
⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝐷 ) |
29 |
1 22
|
oduleval |
⊢ ◡ ( le ‘ 𝑂 ) = ( le ‘ 𝐷 ) |
30 |
|
eqid |
⊢ ( lub ‘ 𝐷 ) = ( lub ‘ 𝐷 ) |
31 |
|
biid |
⊢ ( ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑑 → 𝑏 ◡ ( le ‘ 𝑂 ) 𝑑 ) ) ↔ ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑑 → 𝑏 ◡ ( le ‘ 𝑂 ) 𝑑 ) ) ) |
32 |
|
id |
⊢ ( 𝐷 ∈ V → 𝐷 ∈ V ) |
33 |
28 29 30 31 32
|
lubfval |
⊢ ( 𝐷 ∈ V → ( lub ‘ 𝐷 ) = ( ( 𝑎 ∈ 𝒫 ( Base ‘ 𝑂 ) ↦ ( ℩ 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑑 → 𝑏 ◡ ( le ‘ 𝑂 ) 𝑑 ) ) ) ) ↾ { 𝑎 ∣ ∃! 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑑 → 𝑏 ◡ ( le ‘ 𝑂 ) 𝑑 ) ) } ) ) |
34 |
27 33
|
mp1i |
⊢ ( 𝑂 ∈ 𝑉 → ( lub ‘ 𝐷 ) = ( ( 𝑎 ∈ 𝒫 ( Base ‘ 𝑂 ) ↦ ( ℩ 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑑 → 𝑏 ◡ ( le ‘ 𝑂 ) 𝑑 ) ) ) ) ↾ { 𝑎 ∣ ∃! 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ◡ ( le ‘ 𝑂 ) 𝑑 → 𝑏 ◡ ( le ‘ 𝑂 ) 𝑑 ) ) } ) ) |
35 |
20 26 34
|
3eqtr4a |
⊢ ( 𝑂 ∈ 𝑉 → ( glb ‘ 𝑂 ) = ( lub ‘ 𝐷 ) ) |
36 |
2 35
|
eqtrid |
⊢ ( 𝑂 ∈ 𝑉 → 𝐿 = ( lub ‘ 𝐷 ) ) |