Step |
Hyp |
Ref |
Expression |
1 |
|
oduglb.d |
⊢ 𝐷 = ( ODual ‘ 𝑂 ) |
2 |
|
odumeet.j |
⊢ ∨ = ( join ‘ 𝑂 ) |
3 |
|
eqid |
⊢ ( lub ‘ 𝑂 ) = ( lub ‘ 𝑂 ) |
4 |
1 3
|
oduglb |
⊢ ( 𝑂 ∈ V → ( lub ‘ 𝑂 ) = ( glb ‘ 𝐷 ) ) |
5 |
4
|
breqd |
⊢ ( 𝑂 ∈ V → ( { 𝑎 , 𝑏 } ( lub ‘ 𝑂 ) 𝑐 ↔ { 𝑎 , 𝑏 } ( glb ‘ 𝐷 ) 𝑐 ) ) |
6 |
5
|
oprabbidv |
⊢ ( 𝑂 ∈ V → { 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ∣ { 𝑎 , 𝑏 } ( lub ‘ 𝑂 ) 𝑐 } = { 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ∣ { 𝑎 , 𝑏 } ( glb ‘ 𝐷 ) 𝑐 } ) |
7 |
|
eqid |
⊢ ( join ‘ 𝑂 ) = ( join ‘ 𝑂 ) |
8 |
3 7
|
joinfval |
⊢ ( 𝑂 ∈ V → ( join ‘ 𝑂 ) = { 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ∣ { 𝑎 , 𝑏 } ( lub ‘ 𝑂 ) 𝑐 } ) |
9 |
1
|
fvexi |
⊢ 𝐷 ∈ V |
10 |
|
eqid |
⊢ ( glb ‘ 𝐷 ) = ( glb ‘ 𝐷 ) |
11 |
|
eqid |
⊢ ( meet ‘ 𝐷 ) = ( meet ‘ 𝐷 ) |
12 |
10 11
|
meetfval |
⊢ ( 𝐷 ∈ V → ( meet ‘ 𝐷 ) = { 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ∣ { 𝑎 , 𝑏 } ( glb ‘ 𝐷 ) 𝑐 } ) |
13 |
9 12
|
mp1i |
⊢ ( 𝑂 ∈ V → ( meet ‘ 𝐷 ) = { 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ∣ { 𝑎 , 𝑏 } ( glb ‘ 𝐷 ) 𝑐 } ) |
14 |
6 8 13
|
3eqtr4d |
⊢ ( 𝑂 ∈ V → ( join ‘ 𝑂 ) = ( meet ‘ 𝐷 ) ) |
15 |
|
fvprc |
⊢ ( ¬ 𝑂 ∈ V → ( join ‘ 𝑂 ) = ∅ ) |
16 |
|
fvprc |
⊢ ( ¬ 𝑂 ∈ V → ( ODual ‘ 𝑂 ) = ∅ ) |
17 |
1 16
|
eqtrid |
⊢ ( ¬ 𝑂 ∈ V → 𝐷 = ∅ ) |
18 |
17
|
fveq2d |
⊢ ( ¬ 𝑂 ∈ V → ( meet ‘ 𝐷 ) = ( meet ‘ ∅ ) ) |
19 |
|
meet0 |
⊢ ( meet ‘ ∅ ) = ∅ |
20 |
18 19
|
eqtrdi |
⊢ ( ¬ 𝑂 ∈ V → ( meet ‘ 𝐷 ) = ∅ ) |
21 |
15 20
|
eqtr4d |
⊢ ( ¬ 𝑂 ∈ V → ( join ‘ 𝑂 ) = ( meet ‘ 𝐷 ) ) |
22 |
14 21
|
pm2.61i |
⊢ ( join ‘ 𝑂 ) = ( meet ‘ 𝐷 ) |
23 |
2 22
|
eqtri |
⊢ ∨ = ( meet ‘ 𝐷 ) |