Step |
Hyp |
Ref |
Expression |
1 |
|
odupos.d |
⊢ 𝐷 = ( ODual ‘ 𝑂 ) |
2 |
1
|
fvexi |
⊢ 𝐷 ∈ V |
3 |
2
|
a1i |
⊢ ( 𝑂 ∈ Poset → 𝐷 ∈ V ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝑂 ) |
5 |
1 4
|
odubas |
⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝐷 ) |
6 |
5
|
a1i |
⊢ ( 𝑂 ∈ Poset → ( Base ‘ 𝑂 ) = ( Base ‘ 𝐷 ) ) |
7 |
|
eqid |
⊢ ( le ‘ 𝑂 ) = ( le ‘ 𝑂 ) |
8 |
1 7
|
oduleval |
⊢ ◡ ( le ‘ 𝑂 ) = ( le ‘ 𝐷 ) |
9 |
8
|
a1i |
⊢ ( 𝑂 ∈ Poset → ◡ ( le ‘ 𝑂 ) = ( le ‘ 𝐷 ) ) |
10 |
4 7
|
posref |
⊢ ( ( 𝑂 ∈ Poset ∧ 𝑎 ∈ ( Base ‘ 𝑂 ) ) → 𝑎 ( le ‘ 𝑂 ) 𝑎 ) |
11 |
|
vex |
⊢ 𝑎 ∈ V |
12 |
11 11
|
brcnv |
⊢ ( 𝑎 ◡ ( le ‘ 𝑂 ) 𝑎 ↔ 𝑎 ( le ‘ 𝑂 ) 𝑎 ) |
13 |
10 12
|
sylibr |
⊢ ( ( 𝑂 ∈ Poset ∧ 𝑎 ∈ ( Base ‘ 𝑂 ) ) → 𝑎 ◡ ( le ‘ 𝑂 ) 𝑎 ) |
14 |
|
vex |
⊢ 𝑏 ∈ V |
15 |
11 14
|
brcnv |
⊢ ( 𝑎 ◡ ( le ‘ 𝑂 ) 𝑏 ↔ 𝑏 ( le ‘ 𝑂 ) 𝑎 ) |
16 |
14 11
|
brcnv |
⊢ ( 𝑏 ◡ ( le ‘ 𝑂 ) 𝑎 ↔ 𝑎 ( le ‘ 𝑂 ) 𝑏 ) |
17 |
15 16
|
anbi12ci |
⊢ ( ( 𝑎 ◡ ( le ‘ 𝑂 ) 𝑏 ∧ 𝑏 ◡ ( le ‘ 𝑂 ) 𝑎 ) ↔ ( 𝑎 ( le ‘ 𝑂 ) 𝑏 ∧ 𝑏 ( le ‘ 𝑂 ) 𝑎 ) ) |
18 |
4 7
|
posasymb |
⊢ ( ( 𝑂 ∈ Poset ∧ 𝑎 ∈ ( Base ‘ 𝑂 ) ∧ 𝑏 ∈ ( Base ‘ 𝑂 ) ) → ( ( 𝑎 ( le ‘ 𝑂 ) 𝑏 ∧ 𝑏 ( le ‘ 𝑂 ) 𝑎 ) ↔ 𝑎 = 𝑏 ) ) |
19 |
18
|
biimpd |
⊢ ( ( 𝑂 ∈ Poset ∧ 𝑎 ∈ ( Base ‘ 𝑂 ) ∧ 𝑏 ∈ ( Base ‘ 𝑂 ) ) → ( ( 𝑎 ( le ‘ 𝑂 ) 𝑏 ∧ 𝑏 ( le ‘ 𝑂 ) 𝑎 ) → 𝑎 = 𝑏 ) ) |
20 |
17 19
|
syl5bi |
⊢ ( ( 𝑂 ∈ Poset ∧ 𝑎 ∈ ( Base ‘ 𝑂 ) ∧ 𝑏 ∈ ( Base ‘ 𝑂 ) ) → ( ( 𝑎 ◡ ( le ‘ 𝑂 ) 𝑏 ∧ 𝑏 ◡ ( le ‘ 𝑂 ) 𝑎 ) → 𝑎 = 𝑏 ) ) |
21 |
|
3anrev |
⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑂 ) ∧ 𝑏 ∈ ( Base ‘ 𝑂 ) ∧ 𝑐 ∈ ( Base ‘ 𝑂 ) ) ↔ ( 𝑐 ∈ ( Base ‘ 𝑂 ) ∧ 𝑏 ∈ ( Base ‘ 𝑂 ) ∧ 𝑎 ∈ ( Base ‘ 𝑂 ) ) ) |
22 |
4 7
|
postr |
⊢ ( ( 𝑂 ∈ Poset ∧ ( 𝑐 ∈ ( Base ‘ 𝑂 ) ∧ 𝑏 ∈ ( Base ‘ 𝑂 ) ∧ 𝑎 ∈ ( Base ‘ 𝑂 ) ) ) → ( ( 𝑐 ( le ‘ 𝑂 ) 𝑏 ∧ 𝑏 ( le ‘ 𝑂 ) 𝑎 ) → 𝑐 ( le ‘ 𝑂 ) 𝑎 ) ) |
23 |
21 22
|
sylan2b |
⊢ ( ( 𝑂 ∈ Poset ∧ ( 𝑎 ∈ ( Base ‘ 𝑂 ) ∧ 𝑏 ∈ ( Base ‘ 𝑂 ) ∧ 𝑐 ∈ ( Base ‘ 𝑂 ) ) ) → ( ( 𝑐 ( le ‘ 𝑂 ) 𝑏 ∧ 𝑏 ( le ‘ 𝑂 ) 𝑎 ) → 𝑐 ( le ‘ 𝑂 ) 𝑎 ) ) |
24 |
|
vex |
⊢ 𝑐 ∈ V |
25 |
14 24
|
brcnv |
⊢ ( 𝑏 ◡ ( le ‘ 𝑂 ) 𝑐 ↔ 𝑐 ( le ‘ 𝑂 ) 𝑏 ) |
26 |
15 25
|
anbi12ci |
⊢ ( ( 𝑎 ◡ ( le ‘ 𝑂 ) 𝑏 ∧ 𝑏 ◡ ( le ‘ 𝑂 ) 𝑐 ) ↔ ( 𝑐 ( le ‘ 𝑂 ) 𝑏 ∧ 𝑏 ( le ‘ 𝑂 ) 𝑎 ) ) |
27 |
11 24
|
brcnv |
⊢ ( 𝑎 ◡ ( le ‘ 𝑂 ) 𝑐 ↔ 𝑐 ( le ‘ 𝑂 ) 𝑎 ) |
28 |
23 26 27
|
3imtr4g |
⊢ ( ( 𝑂 ∈ Poset ∧ ( 𝑎 ∈ ( Base ‘ 𝑂 ) ∧ 𝑏 ∈ ( Base ‘ 𝑂 ) ∧ 𝑐 ∈ ( Base ‘ 𝑂 ) ) ) → ( ( 𝑎 ◡ ( le ‘ 𝑂 ) 𝑏 ∧ 𝑏 ◡ ( le ‘ 𝑂 ) 𝑐 ) → 𝑎 ◡ ( le ‘ 𝑂 ) 𝑐 ) ) |
29 |
3 6 9 13 20 28
|
isposd |
⊢ ( 𝑂 ∈ Poset → 𝐷 ∈ Poset ) |