Step |
Hyp |
Ref |
Expression |
1 |
|
odupos.d |
⊢ 𝐷 = ( ODual ‘ 𝑂 ) |
2 |
1
|
odupos |
⊢ ( 𝑂 ∈ Poset → 𝐷 ∈ Poset ) |
3 |
|
eqid |
⊢ ( ODual ‘ 𝐷 ) = ( ODual ‘ 𝐷 ) |
4 |
3
|
odupos |
⊢ ( 𝐷 ∈ Poset → ( ODual ‘ 𝐷 ) ∈ Poset ) |
5 |
|
fvexd |
⊢ ( 𝑂 ∈ 𝑉 → ( ODual ‘ 𝐷 ) ∈ V ) |
6 |
|
id |
⊢ ( 𝑂 ∈ 𝑉 → 𝑂 ∈ 𝑉 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝑂 ) |
8 |
1 7
|
odubas |
⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝐷 ) |
9 |
3 8
|
odubas |
⊢ ( Base ‘ 𝑂 ) = ( Base ‘ ( ODual ‘ 𝐷 ) ) |
10 |
9
|
a1i |
⊢ ( 𝑂 ∈ 𝑉 → ( Base ‘ 𝑂 ) = ( Base ‘ ( ODual ‘ 𝐷 ) ) ) |
11 |
|
eqidd |
⊢ ( 𝑂 ∈ 𝑉 → ( Base ‘ 𝑂 ) = ( Base ‘ 𝑂 ) ) |
12 |
|
eqid |
⊢ ( le ‘ 𝑂 ) = ( le ‘ 𝑂 ) |
13 |
1 12
|
oduleval |
⊢ ◡ ( le ‘ 𝑂 ) = ( le ‘ 𝐷 ) |
14 |
3 13
|
oduleval |
⊢ ◡ ◡ ( le ‘ 𝑂 ) = ( le ‘ ( ODual ‘ 𝐷 ) ) |
15 |
14
|
eqcomi |
⊢ ( le ‘ ( ODual ‘ 𝐷 ) ) = ◡ ◡ ( le ‘ 𝑂 ) |
16 |
15
|
breqi |
⊢ ( 𝑎 ( le ‘ ( ODual ‘ 𝐷 ) ) 𝑏 ↔ 𝑎 ◡ ◡ ( le ‘ 𝑂 ) 𝑏 ) |
17 |
|
vex |
⊢ 𝑎 ∈ V |
18 |
|
vex |
⊢ 𝑏 ∈ V |
19 |
17 18
|
brcnv |
⊢ ( 𝑎 ◡ ◡ ( le ‘ 𝑂 ) 𝑏 ↔ 𝑏 ◡ ( le ‘ 𝑂 ) 𝑎 ) |
20 |
18 17
|
brcnv |
⊢ ( 𝑏 ◡ ( le ‘ 𝑂 ) 𝑎 ↔ 𝑎 ( le ‘ 𝑂 ) 𝑏 ) |
21 |
16 19 20
|
3bitri |
⊢ ( 𝑎 ( le ‘ ( ODual ‘ 𝐷 ) ) 𝑏 ↔ 𝑎 ( le ‘ 𝑂 ) 𝑏 ) |
22 |
21
|
a1i |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ ( 𝑎 ∈ ( Base ‘ 𝑂 ) ∧ 𝑏 ∈ ( Base ‘ 𝑂 ) ) ) → ( 𝑎 ( le ‘ ( ODual ‘ 𝐷 ) ) 𝑏 ↔ 𝑎 ( le ‘ 𝑂 ) 𝑏 ) ) |
23 |
5 6 10 11 22
|
pospropd |
⊢ ( 𝑂 ∈ 𝑉 → ( ( ODual ‘ 𝐷 ) ∈ Poset ↔ 𝑂 ∈ Poset ) ) |
24 |
4 23
|
syl5ib |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝐷 ∈ Poset → 𝑂 ∈ Poset ) ) |
25 |
2 24
|
impbid2 |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝑂 ∈ Poset ↔ 𝐷 ∈ Poset ) ) |