Metamath Proof Explorer


Theorem odval

Description: Second substitution for the group order definition. (Contributed by Mario Carneiro, 13-Jul-2014) (Revised by Stefan O'Rear, 5-Sep-2015) (Revised by AV, 5-Oct-2020)

Ref Expression
Hypotheses odval.1 𝑋 = ( Base ‘ 𝐺 )
odval.2 · = ( .g𝐺 )
odval.3 0 = ( 0g𝐺 )
odval.4 𝑂 = ( od ‘ 𝐺 )
odval.i 𝐼 = { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 }
Assertion odval ( 𝐴𝑋 → ( 𝑂𝐴 ) = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) )

Proof

Step Hyp Ref Expression
1 odval.1 𝑋 = ( Base ‘ 𝐺 )
2 odval.2 · = ( .g𝐺 )
3 odval.3 0 = ( 0g𝐺 )
4 odval.4 𝑂 = ( od ‘ 𝐺 )
5 odval.i 𝐼 = { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 }
6 oveq2 ( 𝑥 = 𝐴 → ( 𝑦 · 𝑥 ) = ( 𝑦 · 𝐴 ) )
7 6 eqeq1d ( 𝑥 = 𝐴 → ( ( 𝑦 · 𝑥 ) = 0 ↔ ( 𝑦 · 𝐴 ) = 0 ) )
8 7 rabbidv ( 𝑥 = 𝐴 → { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } )
9 8 5 eqtr4di ( 𝑥 = 𝐴 → { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = 𝐼 )
10 9 csbeq1d ( 𝑥 = 𝐴 { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) = 𝐼 / 𝑖 if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) )
11 nnex ℕ ∈ V
12 5 11 rabex2 𝐼 ∈ V
13 eqeq1 ( 𝑖 = 𝐼 → ( 𝑖 = ∅ ↔ 𝐼 = ∅ ) )
14 infeq1 ( 𝑖 = 𝐼 → inf ( 𝑖 , ℝ , < ) = inf ( 𝐼 , ℝ , < ) )
15 13 14 ifbieq2d ( 𝑖 = 𝐼 → if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) )
16 12 15 csbie 𝐼 / 𝑖 if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) )
17 10 16 eqtrdi ( 𝑥 = 𝐴 { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) )
18 1 2 3 4 odfval 𝑂 = ( 𝑥𝑋 { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) )
19 c0ex 0 ∈ V
20 ltso < Or ℝ
21 20 infex inf ( 𝐼 , ℝ , < ) ∈ V
22 19 21 ifex if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) ∈ V
23 17 18 22 fvmpt ( 𝐴𝑋 → ( 𝑂𝐴 ) = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) )