Step |
Hyp |
Ref |
Expression |
1 |
|
odval.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
odval.2 |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
odval.3 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
4 |
|
odval.4 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
5 |
|
odval.i |
⊢ 𝐼 = { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } |
6 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑦 · 𝑥 ) = ( 𝑦 · 𝐴 ) ) |
7 |
6
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 · 𝑥 ) = 0 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) |
8 |
7
|
rabbidv |
⊢ ( 𝑥 = 𝐴 → { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) |
9 |
8 5
|
eqtr4di |
⊢ ( 𝑥 = 𝐴 → { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = 𝐼 ) |
10 |
9
|
csbeq1d |
⊢ ( 𝑥 = 𝐴 → ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) = ⦋ 𝐼 / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) |
11 |
|
nnex |
⊢ ℕ ∈ V |
12 |
5 11
|
rabex2 |
⊢ 𝐼 ∈ V |
13 |
|
eqeq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 = ∅ ↔ 𝐼 = ∅ ) ) |
14 |
|
infeq1 |
⊢ ( 𝑖 = 𝐼 → inf ( 𝑖 , ℝ , < ) = inf ( 𝐼 , ℝ , < ) ) |
15 |
13 14
|
ifbieq2d |
⊢ ( 𝑖 = 𝐼 → if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) ) |
16 |
12 15
|
csbie |
⊢ ⦋ 𝐼 / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) |
17 |
10 16
|
eqtrdi |
⊢ ( 𝑥 = 𝐴 → ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) ) |
18 |
1 2 3 4
|
odfval |
⊢ 𝑂 = ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) |
19 |
|
c0ex |
⊢ 0 ∈ V |
20 |
|
ltso |
⊢ < Or ℝ |
21 |
20
|
infex |
⊢ inf ( 𝐼 , ℝ , < ) ∈ V |
22 |
19 21
|
ifex |
⊢ if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) ∈ V |
23 |
17 18 22
|
fvmpt |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) ) |