Metamath Proof Explorer


Theorem odval2

Description: A non-conditional definition of the group order. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses odcl.1 𝑋 = ( Base ‘ 𝐺 )
odcl.2 𝑂 = ( od ‘ 𝐺 )
odid.3 · = ( .g𝐺 )
odid.4 0 = ( 0g𝐺 )
Assertion odval2 ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( 𝑂𝐴 ) = ( 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ( 𝑥𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) )

Proof

Step Hyp Ref Expression
1 odcl.1 𝑋 = ( Base ‘ 𝐺 )
2 odcl.2 𝑂 = ( od ‘ 𝐺 )
3 odid.3 · = ( .g𝐺 )
4 odid.4 0 = ( 0g𝐺 )
5 1 2 odcl ( 𝐴𝑋 → ( 𝑂𝐴 ) ∈ ℕ0 )
6 5 adantl ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( 𝑂𝐴 ) ∈ ℕ0 )
7 1 2 3 4 odeq ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋𝑥 ∈ ℕ0 ) → ( 𝑥 = ( 𝑂𝐴 ) ↔ ∀ 𝑦 ∈ ℕ0 ( 𝑥𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) )
8 7 3expa ( ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑥 = ( 𝑂𝐴 ) ↔ ∀ 𝑦 ∈ ℕ0 ( 𝑥𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) )
9 8 bicomd ( ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) ∧ 𝑥 ∈ ℕ0 ) → ( ∀ 𝑦 ∈ ℕ0 ( 𝑥𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ↔ 𝑥 = ( 𝑂𝐴 ) ) )
10 6 9 riota5 ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ( 𝑥𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) = ( 𝑂𝐴 ) )
11 10 eqcomd ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( 𝑂𝐴 ) = ( 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ( 𝑥𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) )