Step |
Hyp |
Ref |
Expression |
1 |
|
odcl.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
odcl.2 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
3 |
|
odid.3 |
⊢ · = ( .g ‘ 𝐺 ) |
4 |
|
odid.4 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
5 |
1 2
|
odcl |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
6 |
5
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
7 |
1 2 3 4
|
odeq |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ ℕ0 ) → ( 𝑥 = ( 𝑂 ‘ 𝐴 ) ↔ ∀ 𝑦 ∈ ℕ0 ( 𝑥 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) ) |
8 |
7
|
3expa |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑥 = ( 𝑂 ‘ 𝐴 ) ↔ ∀ 𝑦 ∈ ℕ0 ( 𝑥 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) ) |
9 |
8
|
bicomd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ ℕ0 ) → ( ∀ 𝑦 ∈ ℕ0 ( 𝑥 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ↔ 𝑥 = ( 𝑂 ‘ 𝐴 ) ) ) |
10 |
6 9
|
riota5 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ℩ 𝑥 ∈ ℕ0 ∀ 𝑦 ∈ ℕ0 ( 𝑥 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) = ( 𝑂 ‘ 𝐴 ) ) |
11 |
10
|
eqcomd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) = ( ℩ 𝑥 ∈ ℕ0 ∀ 𝑦 ∈ ℕ0 ( 𝑥 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) ) |