Metamath Proof Explorer


Theorem odzcl

Description: The order of a group element is an integer. (Contributed by Mario Carneiro, 28-Feb-2014)

Ref Expression
Assertion odzcl ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ( od𝑁 ) ‘ 𝐴 ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 odzcllem ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ( ( od𝑁 ) ‘ 𝐴 ) ∈ ℕ ∧ 𝑁 ∥ ( ( 𝐴 ↑ ( ( od𝑁 ) ‘ 𝐴 ) ) − 1 ) ) )
2 1 simpld ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ( od𝑁 ) ‘ 𝐴 ) ∈ ℕ )