Metamath Proof Explorer


Theorem odzid

Description: Any element raised to the power of its order is 1 . (Contributed by Mario Carneiro, 28-Feb-2014)

Ref Expression
Assertion odzid ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → 𝑁 ∥ ( ( 𝐴 ↑ ( ( od𝑁 ) ‘ 𝐴 ) ) − 1 ) )

Proof

Step Hyp Ref Expression
1 odzcllem ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ( ( od𝑁 ) ‘ 𝐴 ) ∈ ℕ ∧ 𝑁 ∥ ( ( 𝐴 ↑ ( ( od𝑁 ) ‘ 𝐴 ) ) − 1 ) ) )
2 1 simprd ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → 𝑁 ∥ ( ( 𝐴 ↑ ( ( od𝑁 ) ‘ 𝐴 ) ) − 1 ) )