Metamath Proof Explorer
		
		
		
		Description:  Any element raised to the power of its order is 1 .  (Contributed by Mario Carneiro, 28-Feb-2014)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | odzid | ⊢  ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  gcd  𝑁 )  =  1 )  →  𝑁  ∥  ( ( 𝐴 ↑ ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) )  −  1 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odzcllem | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  gcd  𝑁 )  =  1 )  →  ( ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 )  ∈  ℕ  ∧  𝑁  ∥  ( ( 𝐴 ↑ ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) )  −  1 ) ) ) | 
						
							| 2 | 1 | simprd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  gcd  𝑁 )  =  1 )  →  𝑁  ∥  ( ( 𝐴 ↑ ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) )  −  1 ) ) |