Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑚 = 𝑁 → ( 𝑥 gcd 𝑚 ) = ( 𝑥 gcd 𝑁 ) ) |
2 |
1
|
eqeq1d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝑥 gcd 𝑚 ) = 1 ↔ ( 𝑥 gcd 𝑁 ) = 1 ) ) |
3 |
2
|
rabbidv |
⊢ ( 𝑚 = 𝑁 → { 𝑥 ∈ ℤ ∣ ( 𝑥 gcd 𝑚 ) = 1 } = { 𝑥 ∈ ℤ ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) |
4 |
|
oveq1 |
⊢ ( 𝑛 = 𝑥 → ( 𝑛 gcd 𝑁 ) = ( 𝑥 gcd 𝑁 ) ) |
5 |
4
|
eqeq1d |
⊢ ( 𝑛 = 𝑥 → ( ( 𝑛 gcd 𝑁 ) = 1 ↔ ( 𝑥 gcd 𝑁 ) = 1 ) ) |
6 |
5
|
cbvrabv |
⊢ { 𝑛 ∈ ℤ ∣ ( 𝑛 gcd 𝑁 ) = 1 } = { 𝑥 ∈ ℤ ∣ ( 𝑥 gcd 𝑁 ) = 1 } |
7 |
3 6
|
eqtr4di |
⊢ ( 𝑚 = 𝑁 → { 𝑥 ∈ ℤ ∣ ( 𝑥 gcd 𝑚 ) = 1 } = { 𝑛 ∈ ℤ ∣ ( 𝑛 gcd 𝑁 ) = 1 } ) |
8 |
|
breq1 |
⊢ ( 𝑚 = 𝑁 → ( 𝑚 ∥ ( ( 𝑥 ↑ 𝑛 ) − 1 ) ↔ 𝑁 ∥ ( ( 𝑥 ↑ 𝑛 ) − 1 ) ) ) |
9 |
8
|
rabbidv |
⊢ ( 𝑚 = 𝑁 → { 𝑛 ∈ ℕ ∣ 𝑚 ∥ ( ( 𝑥 ↑ 𝑛 ) − 1 ) } = { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝑥 ↑ 𝑛 ) − 1 ) } ) |
10 |
9
|
infeq1d |
⊢ ( 𝑚 = 𝑁 → inf ( { 𝑛 ∈ ℕ ∣ 𝑚 ∥ ( ( 𝑥 ↑ 𝑛 ) − 1 ) } , ℝ , < ) = inf ( { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝑥 ↑ 𝑛 ) − 1 ) } , ℝ , < ) ) |
11 |
7 10
|
mpteq12dv |
⊢ ( 𝑚 = 𝑁 → ( 𝑥 ∈ { 𝑥 ∈ ℤ ∣ ( 𝑥 gcd 𝑚 ) = 1 } ↦ inf ( { 𝑛 ∈ ℕ ∣ 𝑚 ∥ ( ( 𝑥 ↑ 𝑛 ) − 1 ) } , ℝ , < ) ) = ( 𝑥 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 gcd 𝑁 ) = 1 } ↦ inf ( { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝑥 ↑ 𝑛 ) − 1 ) } , ℝ , < ) ) ) |
12 |
|
df-odz |
⊢ odℤ = ( 𝑚 ∈ ℕ ↦ ( 𝑥 ∈ { 𝑥 ∈ ℤ ∣ ( 𝑥 gcd 𝑚 ) = 1 } ↦ inf ( { 𝑛 ∈ ℕ ∣ 𝑚 ∥ ( ( 𝑥 ↑ 𝑛 ) − 1 ) } , ℝ , < ) ) ) |
13 |
|
zex |
⊢ ℤ ∈ V |
14 |
13
|
mptrabex |
⊢ ( 𝑥 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 gcd 𝑁 ) = 1 } ↦ inf ( { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝑥 ↑ 𝑛 ) − 1 ) } , ℝ , < ) ) ∈ V |
15 |
11 12 14
|
fvmpt |
⊢ ( 𝑁 ∈ ℕ → ( odℤ ‘ 𝑁 ) = ( 𝑥 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 gcd 𝑁 ) = 1 } ↦ inf ( { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝑥 ↑ 𝑛 ) − 1 ) } , ℝ , < ) ) ) |
16 |
15
|
fveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) = ( ( 𝑥 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 gcd 𝑁 ) = 1 } ↦ inf ( { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝑥 ↑ 𝑛 ) − 1 ) } , ℝ , < ) ) ‘ 𝐴 ) ) |
17 |
|
oveq1 |
⊢ ( 𝑛 = 𝐴 → ( 𝑛 gcd 𝑁 ) = ( 𝐴 gcd 𝑁 ) ) |
18 |
17
|
eqeq1d |
⊢ ( 𝑛 = 𝐴 → ( ( 𝑛 gcd 𝑁 ) = 1 ↔ ( 𝐴 gcd 𝑁 ) = 1 ) ) |
19 |
18
|
elrab |
⊢ ( 𝐴 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 gcd 𝑁 ) = 1 } ↔ ( 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) ) |
20 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ↑ 𝑛 ) = ( 𝐴 ↑ 𝑛 ) ) |
21 |
20
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ↑ 𝑛 ) − 1 ) = ( ( 𝐴 ↑ 𝑛 ) − 1 ) ) |
22 |
21
|
breq2d |
⊢ ( 𝑥 = 𝐴 → ( 𝑁 ∥ ( ( 𝑥 ↑ 𝑛 ) − 1 ) ↔ 𝑁 ∥ ( ( 𝐴 ↑ 𝑛 ) − 1 ) ) ) |
23 |
22
|
rabbidv |
⊢ ( 𝑥 = 𝐴 → { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝑥 ↑ 𝑛 ) − 1 ) } = { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝐴 ↑ 𝑛 ) − 1 ) } ) |
24 |
23
|
infeq1d |
⊢ ( 𝑥 = 𝐴 → inf ( { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝑥 ↑ 𝑛 ) − 1 ) } , ℝ , < ) = inf ( { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝐴 ↑ 𝑛 ) − 1 ) } , ℝ , < ) ) |
25 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 gcd 𝑁 ) = 1 } ↦ inf ( { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝑥 ↑ 𝑛 ) − 1 ) } , ℝ , < ) ) = ( 𝑥 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 gcd 𝑁 ) = 1 } ↦ inf ( { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝑥 ↑ 𝑛 ) − 1 ) } , ℝ , < ) ) |
26 |
|
ltso |
⊢ < Or ℝ |
27 |
26
|
infex |
⊢ inf ( { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝐴 ↑ 𝑛 ) − 1 ) } , ℝ , < ) ∈ V |
28 |
24 25 27
|
fvmpt |
⊢ ( 𝐴 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 gcd 𝑁 ) = 1 } → ( ( 𝑥 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 gcd 𝑁 ) = 1 } ↦ inf ( { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝑥 ↑ 𝑛 ) − 1 ) } , ℝ , < ) ) ‘ 𝐴 ) = inf ( { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝐴 ↑ 𝑛 ) − 1 ) } , ℝ , < ) ) |
29 |
19 28
|
sylbir |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ( 𝑥 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 gcd 𝑁 ) = 1 } ↦ inf ( { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝑥 ↑ 𝑛 ) − 1 ) } , ℝ , < ) ) ‘ 𝐴 ) = inf ( { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝐴 ↑ 𝑛 ) − 1 ) } , ℝ , < ) ) |
30 |
16 29
|
sylan9eq |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) ) → ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) = inf ( { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝐴 ↑ 𝑛 ) − 1 ) } , ℝ , < ) ) |
31 |
30
|
3impb |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) = inf ( { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝐴 ↑ 𝑛 ) − 1 ) } , ℝ , < ) ) |