Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o ∅ ) = ( ∅ ↑o ∅ ) ) |
2 |
|
oe0m0 |
⊢ ( ∅ ↑o ∅ ) = 1o |
3 |
1 2
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o ∅ ) = 1o ) |
4 |
3
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 = ∅ ) → ( 𝐴 ↑o ∅ ) = 1o ) |
5 |
|
0elon |
⊢ ∅ ∈ On |
6 |
|
oevn0 |
⊢ ( ( ( 𝐴 ∈ On ∧ ∅ ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o ∅ ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ ∅ ) ) |
7 |
5 6
|
mpanl2 |
⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o ∅ ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ ∅ ) ) |
8 |
|
1oex |
⊢ 1o ∈ V |
9 |
8
|
rdg0 |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ ∅ ) = 1o |
10 |
7 9
|
eqtrdi |
⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o ∅ ) = 1o ) |
11 |
10
|
adantll |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o ∅ ) = 1o ) |
12 |
4 11
|
oe0lem |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐴 ↑o ∅ ) = 1o ) |
13 |
12
|
anidms |
⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o ∅ ) = 1o ) |