Metamath Proof Explorer


Theorem oe0lem

Description: A helper lemma for oe0 and others. (Contributed by NM, 6-Jan-2005)

Ref Expression
Hypotheses oe0lem.1 ( ( 𝜑𝐴 = ∅ ) → 𝜓 )
oe0lem.2 ( ( ( 𝐴 ∈ On ∧ 𝜑 ) ∧ ∅ ∈ 𝐴 ) → 𝜓 )
Assertion oe0lem ( ( 𝐴 ∈ On ∧ 𝜑 ) → 𝜓 )

Proof

Step Hyp Ref Expression
1 oe0lem.1 ( ( 𝜑𝐴 = ∅ ) → 𝜓 )
2 oe0lem.2 ( ( ( 𝐴 ∈ On ∧ 𝜑 ) ∧ ∅ ∈ 𝐴 ) → 𝜓 )
3 1 ex ( 𝜑 → ( 𝐴 = ∅ → 𝜓 ) )
4 3 adantl ( ( 𝐴 ∈ On ∧ 𝜑 ) → ( 𝐴 = ∅ → 𝜓 ) )
5 on0eln0 ( 𝐴 ∈ On → ( ∅ ∈ 𝐴𝐴 ≠ ∅ ) )
6 5 adantr ( ( 𝐴 ∈ On ∧ 𝜑 ) → ( ∅ ∈ 𝐴𝐴 ≠ ∅ ) )
7 2 ex ( ( 𝐴 ∈ On ∧ 𝜑 ) → ( ∅ ∈ 𝐴𝜓 ) )
8 6 7 sylbird ( ( 𝐴 ∈ On ∧ 𝜑 ) → ( 𝐴 ≠ ∅ → 𝜓 ) )
9 4 8 pm2.61dne ( ( 𝐴 ∈ On ∧ 𝜑 ) → 𝜓 )