Description: A helper lemma for oe0 and others. (Contributed by NM, 6-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oe0lem.1 | ⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → 𝜓 ) | |
| oe0lem.2 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝜑 ) ∧ ∅ ∈ 𝐴 ) → 𝜓 ) | ||
| Assertion | oe0lem | ⊢ ( ( 𝐴 ∈ On ∧ 𝜑 ) → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oe0lem.1 | ⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → 𝜓 ) | |
| 2 | oe0lem.2 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝜑 ) ∧ ∅ ∈ 𝐴 ) → 𝜓 ) | |
| 3 | 1 | ex | ⊢ ( 𝜑 → ( 𝐴 = ∅ → 𝜓 ) ) |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝜑 ) → ( 𝐴 = ∅ → 𝜓 ) ) |
| 5 | on0eln0 | ⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐴 ∈ On ∧ 𝜑 ) → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 7 | 2 | ex | ⊢ ( ( 𝐴 ∈ On ∧ 𝜑 ) → ( ∅ ∈ 𝐴 → 𝜓 ) ) |
| 8 | 6 7 | sylbird | ⊢ ( ( 𝐴 ∈ On ∧ 𝜑 ) → ( 𝐴 ≠ ∅ → 𝜓 ) ) |
| 9 | 4 8 | pm2.61dne | ⊢ ( ( 𝐴 ∈ On ∧ 𝜑 ) → 𝜓 ) |