Description: Value of zero raised to an ordinal. (Contributed by NM, 31-Dec-2004) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oe0m | ⊢ ( 𝐴 ∈ On → ( ∅ ↑o 𝐴 ) = ( 1o ∖ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon | ⊢ ∅ ∈ On | |
| 2 | oev | ⊢ ( ( ∅ ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ↑o 𝐴 ) = if ( ∅ = ∅ , ( 1o ∖ 𝐴 ) , ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o ∅ ) ) , 1o ) ‘ 𝐴 ) ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ On → ( ∅ ↑o 𝐴 ) = if ( ∅ = ∅ , ( 1o ∖ 𝐴 ) , ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o ∅ ) ) , 1o ) ‘ 𝐴 ) ) ) |
| 4 | eqid | ⊢ ∅ = ∅ | |
| 5 | 4 | iftruei | ⊢ if ( ∅ = ∅ , ( 1o ∖ 𝐴 ) , ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o ∅ ) ) , 1o ) ‘ 𝐴 ) ) = ( 1o ∖ 𝐴 ) |
| 6 | 3 5 | eqtrdi | ⊢ ( 𝐴 ∈ On → ( ∅ ↑o 𝐴 ) = ( 1o ∖ 𝐴 ) ) |