Description: Ordinal exponentiation with zero base and nonzero exponent. Proposition 8.31(2) of TakeutiZaring p. 67 and its converse. (Contributed by NM, 5-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | oe0m1 | ⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ ( ∅ ↑o 𝐴 ) = ∅ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
2 | ordgt0ge1 | ⊢ ( Ord 𝐴 → ( ∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴 ) ) | |
3 | 1 2 | syl | ⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴 ) ) |
4 | ssdif0 | ⊢ ( 1o ⊆ 𝐴 ↔ ( 1o ∖ 𝐴 ) = ∅ ) | |
5 | oe0m | ⊢ ( 𝐴 ∈ On → ( ∅ ↑o 𝐴 ) = ( 1o ∖ 𝐴 ) ) | |
6 | 5 | eqeq1d | ⊢ ( 𝐴 ∈ On → ( ( ∅ ↑o 𝐴 ) = ∅ ↔ ( 1o ∖ 𝐴 ) = ∅ ) ) |
7 | 4 6 | bitr4id | ⊢ ( 𝐴 ∈ On → ( 1o ⊆ 𝐴 ↔ ( ∅ ↑o 𝐴 ) = ∅ ) ) |
8 | 3 7 | bitrd | ⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ ( ∅ ↑o 𝐴 ) = ∅ ) ) |