Metamath Proof Explorer


Theorem oe1

Description: Ordinal exponentiation with an exponent of 1. (Contributed by NM, 2-Jan-2005)

Ref Expression
Assertion oe1 ( 𝐴 ∈ On → ( 𝐴o 1o ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 df-1o 1o = suc ∅
2 1 oveq2i ( 𝐴o 1o ) = ( 𝐴o suc ∅ )
3 peano1 ∅ ∈ ω
4 onesuc ( ( 𝐴 ∈ On ∧ ∅ ∈ ω ) → ( 𝐴o suc ∅ ) = ( ( 𝐴o ∅ ) ·o 𝐴 ) )
5 3 4 mpan2 ( 𝐴 ∈ On → ( 𝐴o suc ∅ ) = ( ( 𝐴o ∅ ) ·o 𝐴 ) )
6 2 5 eqtrid ( 𝐴 ∈ On → ( 𝐴o 1o ) = ( ( 𝐴o ∅ ) ·o 𝐴 ) )
7 oe0 ( 𝐴 ∈ On → ( 𝐴o ∅ ) = 1o )
8 7 oveq1d ( 𝐴 ∈ On → ( ( 𝐴o ∅ ) ·o 𝐴 ) = ( 1o ·o 𝐴 ) )
9 om1r ( 𝐴 ∈ On → ( 1o ·o 𝐴 ) = 𝐴 )
10 6 8 9 3eqtrd ( 𝐴 ∈ On → ( 𝐴o 1o ) = 𝐴 )