Description: Ordinal exponentiation with an exponent of 1. Lemma 2.16 of Schloeder p. 6. (Contributed by NM, 2-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oe1 | ⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o 1o ) = 𝐴 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-1o | ⊢ 1o = suc ∅ | |
| 2 | 1 | oveq2i | ⊢ ( 𝐴 ↑o 1o ) = ( 𝐴 ↑o suc ∅ ) | 
| 3 | peano1 | ⊢ ∅ ∈ ω | |
| 4 | onesuc | ⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ ω ) → ( 𝐴 ↑o suc ∅ ) = ( ( 𝐴 ↑o ∅ ) ·o 𝐴 ) ) | |
| 5 | 3 4 | mpan2 | ⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o suc ∅ ) = ( ( 𝐴 ↑o ∅ ) ·o 𝐴 ) ) | 
| 6 | 2 5 | eqtrid | ⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o 1o ) = ( ( 𝐴 ↑o ∅ ) ·o 𝐴 ) ) | 
| 7 | oe0 | ⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o ∅ ) = 1o ) | |
| 8 | 7 | oveq1d | ⊢ ( 𝐴 ∈ On → ( ( 𝐴 ↑o ∅ ) ·o 𝐴 ) = ( 1o ·o 𝐴 ) ) | 
| 9 | om1r | ⊢ ( 𝐴 ∈ On → ( 1o ·o 𝐴 ) = 𝐴 ) | |
| 10 | 6 8 9 | 3eqtrd | ⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o 1o ) = 𝐴 ) |