| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( 𝑥  =  ∅  →  ( 1o  ↑o  𝑥 )  =  ( 1o  ↑o  ∅ ) ) | 
						
							| 2 | 1 | eqeq1d | ⊢ ( 𝑥  =  ∅  →  ( ( 1o  ↑o  𝑥 )  =  1o  ↔  ( 1o  ↑o  ∅ )  =  1o ) ) | 
						
							| 3 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 1o  ↑o  𝑥 )  =  ( 1o  ↑o  𝑦 ) ) | 
						
							| 4 | 3 | eqeq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 1o  ↑o  𝑥 )  =  1o  ↔  ( 1o  ↑o  𝑦 )  =  1o ) ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑥  =  suc  𝑦  →  ( 1o  ↑o  𝑥 )  =  ( 1o  ↑o  suc  𝑦 ) ) | 
						
							| 6 | 5 | eqeq1d | ⊢ ( 𝑥  =  suc  𝑦  →  ( ( 1o  ↑o  𝑥 )  =  1o  ↔  ( 1o  ↑o  suc  𝑦 )  =  1o ) ) | 
						
							| 7 |  | oveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 1o  ↑o  𝑥 )  =  ( 1o  ↑o  𝐴 ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 1o  ↑o  𝑥 )  =  1o  ↔  ( 1o  ↑o  𝐴 )  =  1o ) ) | 
						
							| 9 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 10 |  | oe0 | ⊢ ( 1o  ∈  On  →  ( 1o  ↑o  ∅ )  =  1o ) | 
						
							| 11 | 9 10 | ax-mp | ⊢ ( 1o  ↑o  ∅ )  =  1o | 
						
							| 12 |  | oesuc | ⊢ ( ( 1o  ∈  On  ∧  𝑦  ∈  On )  →  ( 1o  ↑o  suc  𝑦 )  =  ( ( 1o  ↑o  𝑦 )  ·o  1o ) ) | 
						
							| 13 | 9 12 | mpan | ⊢ ( 𝑦  ∈  On  →  ( 1o  ↑o  suc  𝑦 )  =  ( ( 1o  ↑o  𝑦 )  ·o  1o ) ) | 
						
							| 14 |  | oveq1 | ⊢ ( ( 1o  ↑o  𝑦 )  =  1o  →  ( ( 1o  ↑o  𝑦 )  ·o  1o )  =  ( 1o  ·o  1o ) ) | 
						
							| 15 |  | om1 | ⊢ ( 1o  ∈  On  →  ( 1o  ·o  1o )  =  1o ) | 
						
							| 16 | 9 15 | ax-mp | ⊢ ( 1o  ·o  1o )  =  1o | 
						
							| 17 | 14 16 | eqtrdi | ⊢ ( ( 1o  ↑o  𝑦 )  =  1o  →  ( ( 1o  ↑o  𝑦 )  ·o  1o )  =  1o ) | 
						
							| 18 | 13 17 | sylan9eq | ⊢ ( ( 𝑦  ∈  On  ∧  ( 1o  ↑o  𝑦 )  =  1o )  →  ( 1o  ↑o  suc  𝑦 )  =  1o ) | 
						
							| 19 | 18 | ex | ⊢ ( 𝑦  ∈  On  →  ( ( 1o  ↑o  𝑦 )  =  1o  →  ( 1o  ↑o  suc  𝑦 )  =  1o ) ) | 
						
							| 20 |  | iuneq2 | ⊢ ( ∀ 𝑦  ∈  𝑥 ( 1o  ↑o  𝑦 )  =  1o  →  ∪  𝑦  ∈  𝑥 ( 1o  ↑o  𝑦 )  =  ∪  𝑦  ∈  𝑥 1o ) | 
						
							| 21 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 22 |  | 0lt1o | ⊢ ∅  ∈  1o | 
						
							| 23 |  | oelim | ⊢ ( ( ( 1o  ∈  On  ∧  ( 𝑥  ∈  V  ∧  Lim  𝑥 ) )  ∧  ∅  ∈  1o )  →  ( 1o  ↑o  𝑥 )  =  ∪  𝑦  ∈  𝑥 ( 1o  ↑o  𝑦 ) ) | 
						
							| 24 | 22 23 | mpan2 | ⊢ ( ( 1o  ∈  On  ∧  ( 𝑥  ∈  V  ∧  Lim  𝑥 ) )  →  ( 1o  ↑o  𝑥 )  =  ∪  𝑦  ∈  𝑥 ( 1o  ↑o  𝑦 ) ) | 
						
							| 25 | 9 24 | mpan | ⊢ ( ( 𝑥  ∈  V  ∧  Lim  𝑥 )  →  ( 1o  ↑o  𝑥 )  =  ∪  𝑦  ∈  𝑥 ( 1o  ↑o  𝑦 ) ) | 
						
							| 26 | 21 25 | mpan | ⊢ ( Lim  𝑥  →  ( 1o  ↑o  𝑥 )  =  ∪  𝑦  ∈  𝑥 ( 1o  ↑o  𝑦 ) ) | 
						
							| 27 | 26 | eqeq1d | ⊢ ( Lim  𝑥  →  ( ( 1o  ↑o  𝑥 )  =  1o  ↔  ∪  𝑦  ∈  𝑥 ( 1o  ↑o  𝑦 )  =  1o ) ) | 
						
							| 28 |  | 0ellim | ⊢ ( Lim  𝑥  →  ∅  ∈  𝑥 ) | 
						
							| 29 |  | ne0i | ⊢ ( ∅  ∈  𝑥  →  𝑥  ≠  ∅ ) | 
						
							| 30 |  | iunconst | ⊢ ( 𝑥  ≠  ∅  →  ∪  𝑦  ∈  𝑥 1o  =  1o ) | 
						
							| 31 | 28 29 30 | 3syl | ⊢ ( Lim  𝑥  →  ∪  𝑦  ∈  𝑥 1o  =  1o ) | 
						
							| 32 | 31 | eqeq2d | ⊢ ( Lim  𝑥  →  ( ∪  𝑦  ∈  𝑥 ( 1o  ↑o  𝑦 )  =  ∪  𝑦  ∈  𝑥 1o  ↔  ∪  𝑦  ∈  𝑥 ( 1o  ↑o  𝑦 )  =  1o ) ) | 
						
							| 33 | 27 32 | bitr4d | ⊢ ( Lim  𝑥  →  ( ( 1o  ↑o  𝑥 )  =  1o  ↔  ∪  𝑦  ∈  𝑥 ( 1o  ↑o  𝑦 )  =  ∪  𝑦  ∈  𝑥 1o ) ) | 
						
							| 34 | 20 33 | imbitrrid | ⊢ ( Lim  𝑥  →  ( ∀ 𝑦  ∈  𝑥 ( 1o  ↑o  𝑦 )  =  1o  →  ( 1o  ↑o  𝑥 )  =  1o ) ) | 
						
							| 35 | 2 4 6 8 11 19 34 | tfinds | ⊢ ( 𝐴  ∈  On  →  ( 1o  ↑o  𝐴 )  =  1o ) |