Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 1o ↑o 𝑥 ) = ( 1o ↑o ∅ ) ) |
2 |
1
|
eqeq1d |
⊢ ( 𝑥 = ∅ → ( ( 1o ↑o 𝑥 ) = 1o ↔ ( 1o ↑o ∅ ) = 1o ) ) |
3 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 1o ↑o 𝑥 ) = ( 1o ↑o 𝑦 ) ) |
4 |
3
|
eqeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 1o ↑o 𝑥 ) = 1o ↔ ( 1o ↑o 𝑦 ) = 1o ) ) |
5 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 1o ↑o 𝑥 ) = ( 1o ↑o suc 𝑦 ) ) |
6 |
5
|
eqeq1d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 1o ↑o 𝑥 ) = 1o ↔ ( 1o ↑o suc 𝑦 ) = 1o ) ) |
7 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 1o ↑o 𝑥 ) = ( 1o ↑o 𝐴 ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 1o ↑o 𝑥 ) = 1o ↔ ( 1o ↑o 𝐴 ) = 1o ) ) |
9 |
|
1on |
⊢ 1o ∈ On |
10 |
|
oe0 |
⊢ ( 1o ∈ On → ( 1o ↑o ∅ ) = 1o ) |
11 |
9 10
|
ax-mp |
⊢ ( 1o ↑o ∅ ) = 1o |
12 |
|
oesuc |
⊢ ( ( 1o ∈ On ∧ 𝑦 ∈ On ) → ( 1o ↑o suc 𝑦 ) = ( ( 1o ↑o 𝑦 ) ·o 1o ) ) |
13 |
9 12
|
mpan |
⊢ ( 𝑦 ∈ On → ( 1o ↑o suc 𝑦 ) = ( ( 1o ↑o 𝑦 ) ·o 1o ) ) |
14 |
|
oveq1 |
⊢ ( ( 1o ↑o 𝑦 ) = 1o → ( ( 1o ↑o 𝑦 ) ·o 1o ) = ( 1o ·o 1o ) ) |
15 |
|
om1 |
⊢ ( 1o ∈ On → ( 1o ·o 1o ) = 1o ) |
16 |
9 15
|
ax-mp |
⊢ ( 1o ·o 1o ) = 1o |
17 |
14 16
|
eqtrdi |
⊢ ( ( 1o ↑o 𝑦 ) = 1o → ( ( 1o ↑o 𝑦 ) ·o 1o ) = 1o ) |
18 |
13 17
|
sylan9eq |
⊢ ( ( 𝑦 ∈ On ∧ ( 1o ↑o 𝑦 ) = 1o ) → ( 1o ↑o suc 𝑦 ) = 1o ) |
19 |
18
|
ex |
⊢ ( 𝑦 ∈ On → ( ( 1o ↑o 𝑦 ) = 1o → ( 1o ↑o suc 𝑦 ) = 1o ) ) |
20 |
|
iuneq2 |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 1o ↑o 𝑦 ) = 1o → ∪ 𝑦 ∈ 𝑥 ( 1o ↑o 𝑦 ) = ∪ 𝑦 ∈ 𝑥 1o ) |
21 |
|
vex |
⊢ 𝑥 ∈ V |
22 |
|
0lt1o |
⊢ ∅ ∈ 1o |
23 |
|
oelim |
⊢ ( ( ( 1o ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ∅ ∈ 1o ) → ( 1o ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 1o ↑o 𝑦 ) ) |
24 |
22 23
|
mpan2 |
⊢ ( ( 1o ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 1o ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 1o ↑o 𝑦 ) ) |
25 |
9 24
|
mpan |
⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → ( 1o ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 1o ↑o 𝑦 ) ) |
26 |
21 25
|
mpan |
⊢ ( Lim 𝑥 → ( 1o ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 1o ↑o 𝑦 ) ) |
27 |
26
|
eqeq1d |
⊢ ( Lim 𝑥 → ( ( 1o ↑o 𝑥 ) = 1o ↔ ∪ 𝑦 ∈ 𝑥 ( 1o ↑o 𝑦 ) = 1o ) ) |
28 |
|
0ellim |
⊢ ( Lim 𝑥 → ∅ ∈ 𝑥 ) |
29 |
|
ne0i |
⊢ ( ∅ ∈ 𝑥 → 𝑥 ≠ ∅ ) |
30 |
|
iunconst |
⊢ ( 𝑥 ≠ ∅ → ∪ 𝑦 ∈ 𝑥 1o = 1o ) |
31 |
28 29 30
|
3syl |
⊢ ( Lim 𝑥 → ∪ 𝑦 ∈ 𝑥 1o = 1o ) |
32 |
31
|
eqeq2d |
⊢ ( Lim 𝑥 → ( ∪ 𝑦 ∈ 𝑥 ( 1o ↑o 𝑦 ) = ∪ 𝑦 ∈ 𝑥 1o ↔ ∪ 𝑦 ∈ 𝑥 ( 1o ↑o 𝑦 ) = 1o ) ) |
33 |
27 32
|
bitr4d |
⊢ ( Lim 𝑥 → ( ( 1o ↑o 𝑥 ) = 1o ↔ ∪ 𝑦 ∈ 𝑥 ( 1o ↑o 𝑦 ) = ∪ 𝑦 ∈ 𝑥 1o ) ) |
34 |
20 33
|
syl5ibr |
⊢ ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 1o ↑o 𝑦 ) = 1o → ( 1o ↑o 𝑥 ) = 1o ) ) |
35 |
2 4 6 8 11 19 34
|
tfinds |
⊢ ( 𝐴 ∈ On → ( 1o ↑o 𝐴 ) = 1o ) |