Step |
Hyp |
Ref |
Expression |
1 |
|
oeordi |
⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 ↑o 𝐵 ) ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
2 |
1
|
ancoms |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐶 ∈ On ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 ↑o 𝐵 ) ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
3 |
2
|
3adant2 |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 ↑o 𝐵 ) ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
4 |
|
oeordi |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) → ( 𝐶 ∈ 𝐵 → ( 𝐴 ↑o 𝐶 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
5 |
4
|
ancoms |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) → ( 𝐶 ∈ 𝐵 → ( 𝐴 ↑o 𝐶 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
6 |
5
|
3adant3 |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐶 ∈ 𝐵 → ( 𝐴 ↑o 𝐶 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
7 |
3 6
|
orim12d |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) → ( ( 𝐴 ↑o 𝐵 ) ∈ ( 𝐴 ↑o 𝐶 ) ∨ ( 𝐴 ↑o 𝐶 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) ) |
8 |
7
|
con3d |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ¬ ( ( 𝐴 ↑o 𝐵 ) ∈ ( 𝐴 ↑o 𝐶 ) ∨ ( 𝐴 ↑o 𝐶 ) ∈ ( 𝐴 ↑o 𝐵 ) ) → ¬ ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) ) |
9 |
|
eldifi |
⊢ ( 𝐴 ∈ ( On ∖ 2o ) → 𝐴 ∈ On ) |
10 |
9
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → 𝐴 ∈ On ) |
11 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → 𝐵 ∈ On ) |
12 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
13 |
10 11 12
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
14 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → 𝐶 ∈ On ) |
15 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ↑o 𝐶 ) ∈ On ) |
16 |
10 14 15
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ↑o 𝐶 ) ∈ On ) |
17 |
|
eloni |
⊢ ( ( 𝐴 ↑o 𝐵 ) ∈ On → Ord ( 𝐴 ↑o 𝐵 ) ) |
18 |
|
eloni |
⊢ ( ( 𝐴 ↑o 𝐶 ) ∈ On → Ord ( 𝐴 ↑o 𝐶 ) ) |
19 |
|
ordtri3 |
⊢ ( ( Ord ( 𝐴 ↑o 𝐵 ) ∧ Ord ( 𝐴 ↑o 𝐶 ) ) → ( ( 𝐴 ↑o 𝐵 ) = ( 𝐴 ↑o 𝐶 ) ↔ ¬ ( ( 𝐴 ↑o 𝐵 ) ∈ ( 𝐴 ↑o 𝐶 ) ∨ ( 𝐴 ↑o 𝐶 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) ) |
20 |
17 18 19
|
syl2an |
⊢ ( ( ( 𝐴 ↑o 𝐵 ) ∈ On ∧ ( 𝐴 ↑o 𝐶 ) ∈ On ) → ( ( 𝐴 ↑o 𝐵 ) = ( 𝐴 ↑o 𝐶 ) ↔ ¬ ( ( 𝐴 ↑o 𝐵 ) ∈ ( 𝐴 ↑o 𝐶 ) ∨ ( 𝐴 ↑o 𝐶 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) ) |
21 |
13 16 20
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ↑o 𝐵 ) = ( 𝐴 ↑o 𝐶 ) ↔ ¬ ( ( 𝐴 ↑o 𝐵 ) ∈ ( 𝐴 ↑o 𝐶 ) ∨ ( 𝐴 ↑o 𝐶 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) ) |
22 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
23 |
|
eloni |
⊢ ( 𝐶 ∈ On → Ord 𝐶 ) |
24 |
|
ordtri3 |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) ) |
25 |
22 23 24
|
syl2an |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) ) |
26 |
25
|
3adant1 |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) ) |
27 |
8 21 26
|
3imtr4d |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ↑o 𝐵 ) = ( 𝐴 ↑o 𝐶 ) → 𝐵 = 𝐶 ) ) |
28 |
|
oveq2 |
⊢ ( 𝐵 = 𝐶 → ( 𝐴 ↑o 𝐵 ) = ( 𝐴 ↑o 𝐶 ) ) |
29 |
27 28
|
impbid1 |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ↑o 𝐵 ) = ( 𝐴 ↑o 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |