| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝐵 = ∅ → ( ∅ ↑o 𝐵 ) = ( ∅ ↑o ∅ ) ) |
| 2 |
|
oe0m0 |
⊢ ( ∅ ↑o ∅ ) = 1o |
| 3 |
|
1on |
⊢ 1o ∈ On |
| 4 |
2 3
|
eqeltri |
⊢ ( ∅ ↑o ∅ ) ∈ On |
| 5 |
1 4
|
eqeltrdi |
⊢ ( 𝐵 = ∅ → ( ∅ ↑o 𝐵 ) ∈ On ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐵 = ∅ ) → ( ∅ ↑o 𝐵 ) ∈ On ) |
| 7 |
|
oe0m1 |
⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ ( ∅ ↑o 𝐵 ) = ∅ ) ) |
| 8 |
7
|
biimpa |
⊢ ( ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) → ( ∅ ↑o 𝐵 ) = ∅ ) |
| 9 |
|
0elon |
⊢ ∅ ∈ On |
| 10 |
8 9
|
eqeltrdi |
⊢ ( ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) → ( ∅ ↑o 𝐵 ) ∈ On ) |
| 11 |
10
|
adantll |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐵 ) → ( ∅ ↑o 𝐵 ) ∈ On ) |
| 12 |
6 11
|
oe0lem |
⊢ ( ( 𝐵 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ↑o 𝐵 ) ∈ On ) |
| 13 |
12
|
anidms |
⊢ ( 𝐵 ∈ On → ( ∅ ↑o 𝐵 ) ∈ On ) |
| 14 |
|
oveq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o 𝐵 ) = ( ∅ ↑o 𝐵 ) ) |
| 15 |
14
|
eleq1d |
⊢ ( 𝐴 = ∅ → ( ( 𝐴 ↑o 𝐵 ) ∈ On ↔ ( ∅ ↑o 𝐵 ) ∈ On ) ) |
| 16 |
13 15
|
imbitrrid |
⊢ ( 𝐴 = ∅ → ( 𝐵 ∈ On → ( 𝐴 ↑o 𝐵 ) ∈ On ) ) |
| 17 |
16
|
impcom |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
| 18 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o ∅ ) ) |
| 19 |
18
|
eleq1d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ↑o 𝑥 ) ∈ On ↔ ( 𝐴 ↑o ∅ ) ∈ On ) ) |
| 20 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝑦 ) ) |
| 21 |
20
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ↑o 𝑥 ) ∈ On ↔ ( 𝐴 ↑o 𝑦 ) ∈ On ) ) |
| 22 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o suc 𝑦 ) ) |
| 23 |
22
|
eleq1d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ↑o 𝑥 ) ∈ On ↔ ( 𝐴 ↑o suc 𝑦 ) ∈ On ) ) |
| 24 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝐵 ) ) |
| 25 |
24
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ↑o 𝑥 ) ∈ On ↔ ( 𝐴 ↑o 𝐵 ) ∈ On ) ) |
| 26 |
|
oe0 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o ∅ ) = 1o ) |
| 27 |
26 3
|
eqeltrdi |
⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o ∅ ) ∈ On ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o ∅ ) ∈ On ) |
| 29 |
|
omcl |
⊢ ( ( ( 𝐴 ↑o 𝑦 ) ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ∈ On ) |
| 30 |
29
|
expcom |
⊢ ( 𝐴 ∈ On → ( ( 𝐴 ↑o 𝑦 ) ∈ On → ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ∈ On ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ↑o 𝑦 ) ∈ On → ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ∈ On ) ) |
| 32 |
|
oesuc |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o suc 𝑦 ) = ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) |
| 33 |
32
|
eleq1d |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ↑o suc 𝑦 ) ∈ On ↔ ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ∈ On ) ) |
| 34 |
31 33
|
sylibrd |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ↑o 𝑦 ) ∈ On → ( 𝐴 ↑o suc 𝑦 ) ∈ On ) ) |
| 35 |
34
|
expcom |
⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ On → ( ( 𝐴 ↑o 𝑦 ) ∈ On → ( 𝐴 ↑o suc 𝑦 ) ∈ On ) ) ) |
| 36 |
35
|
adantrd |
⊢ ( 𝑦 ∈ On → ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ↑o 𝑦 ) ∈ On → ( 𝐴 ↑o suc 𝑦 ) ∈ On ) ) ) |
| 37 |
|
vex |
⊢ 𝑥 ∈ V |
| 38 |
|
iunon |
⊢ ( ( 𝑥 ∈ V ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ∈ On ) → ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ∈ On ) |
| 39 |
37 38
|
mpan |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ∈ On → ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ∈ On ) |
| 40 |
|
oelim |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 41 |
37 40
|
mpanlr1 |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 42 |
41
|
anasss |
⊢ ( ( 𝐴 ∈ On ∧ ( Lim 𝑥 ∧ ∅ ∈ 𝐴 ) ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 43 |
42
|
an12s |
⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 44 |
43
|
eleq1d |
⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) → ( ( 𝐴 ↑o 𝑥 ) ∈ On ↔ ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ∈ On ) ) |
| 45 |
39 44
|
imbitrrid |
⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ∈ On → ( 𝐴 ↑o 𝑥 ) ∈ On ) ) |
| 46 |
45
|
ex |
⊢ ( Lim 𝑥 → ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ∈ On → ( 𝐴 ↑o 𝑥 ) ∈ On ) ) ) |
| 47 |
19 21 23 25 28 36 46
|
tfinds3 |
⊢ ( 𝐵 ∈ On → ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) ) |
| 48 |
47
|
expd |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 → ( 𝐴 ↑o 𝐵 ) ∈ On ) ) ) |
| 49 |
48
|
com12 |
⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( ∅ ∈ 𝐴 → ( 𝐴 ↑o 𝐵 ) ∈ On ) ) ) |
| 50 |
49
|
imp31 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
| 51 |
17 50
|
oe0lem |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |