Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝐵 = ∅ → ( ∅ ↑o 𝐵 ) = ( ∅ ↑o ∅ ) ) |
2 |
|
oe0m0 |
⊢ ( ∅ ↑o ∅ ) = 1o |
3 |
|
1on |
⊢ 1o ∈ On |
4 |
2 3
|
eqeltri |
⊢ ( ∅ ↑o ∅ ) ∈ On |
5 |
1 4
|
eqeltrdi |
⊢ ( 𝐵 = ∅ → ( ∅ ↑o 𝐵 ) ∈ On ) |
6 |
5
|
adantl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐵 = ∅ ) → ( ∅ ↑o 𝐵 ) ∈ On ) |
7 |
|
oe0m1 |
⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ ( ∅ ↑o 𝐵 ) = ∅ ) ) |
8 |
7
|
biimpa |
⊢ ( ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) → ( ∅ ↑o 𝐵 ) = ∅ ) |
9 |
|
0elon |
⊢ ∅ ∈ On |
10 |
8 9
|
eqeltrdi |
⊢ ( ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) → ( ∅ ↑o 𝐵 ) ∈ On ) |
11 |
10
|
adantll |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐵 ) → ( ∅ ↑o 𝐵 ) ∈ On ) |
12 |
6 11
|
oe0lem |
⊢ ( ( 𝐵 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ↑o 𝐵 ) ∈ On ) |
13 |
12
|
anidms |
⊢ ( 𝐵 ∈ On → ( ∅ ↑o 𝐵 ) ∈ On ) |
14 |
|
oveq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o 𝐵 ) = ( ∅ ↑o 𝐵 ) ) |
15 |
14
|
eleq1d |
⊢ ( 𝐴 = ∅ → ( ( 𝐴 ↑o 𝐵 ) ∈ On ↔ ( ∅ ↑o 𝐵 ) ∈ On ) ) |
16 |
13 15
|
syl5ibr |
⊢ ( 𝐴 = ∅ → ( 𝐵 ∈ On → ( 𝐴 ↑o 𝐵 ) ∈ On ) ) |
17 |
16
|
impcom |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
18 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o ∅ ) ) |
19 |
18
|
eleq1d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ↑o 𝑥 ) ∈ On ↔ ( 𝐴 ↑o ∅ ) ∈ On ) ) |
20 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝑦 ) ) |
21 |
20
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ↑o 𝑥 ) ∈ On ↔ ( 𝐴 ↑o 𝑦 ) ∈ On ) ) |
22 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o suc 𝑦 ) ) |
23 |
22
|
eleq1d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ↑o 𝑥 ) ∈ On ↔ ( 𝐴 ↑o suc 𝑦 ) ∈ On ) ) |
24 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝐵 ) ) |
25 |
24
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ↑o 𝑥 ) ∈ On ↔ ( 𝐴 ↑o 𝐵 ) ∈ On ) ) |
26 |
|
oe0 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o ∅ ) = 1o ) |
27 |
26 3
|
eqeltrdi |
⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o ∅ ) ∈ On ) |
28 |
27
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o ∅ ) ∈ On ) |
29 |
|
omcl |
⊢ ( ( ( 𝐴 ↑o 𝑦 ) ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ∈ On ) |
30 |
29
|
expcom |
⊢ ( 𝐴 ∈ On → ( ( 𝐴 ↑o 𝑦 ) ∈ On → ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ∈ On ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ↑o 𝑦 ) ∈ On → ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ∈ On ) ) |
32 |
|
oesuc |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o suc 𝑦 ) = ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) |
33 |
32
|
eleq1d |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ↑o suc 𝑦 ) ∈ On ↔ ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ∈ On ) ) |
34 |
31 33
|
sylibrd |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ↑o 𝑦 ) ∈ On → ( 𝐴 ↑o suc 𝑦 ) ∈ On ) ) |
35 |
34
|
expcom |
⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ On → ( ( 𝐴 ↑o 𝑦 ) ∈ On → ( 𝐴 ↑o suc 𝑦 ) ∈ On ) ) ) |
36 |
35
|
adantrd |
⊢ ( 𝑦 ∈ On → ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ↑o 𝑦 ) ∈ On → ( 𝐴 ↑o suc 𝑦 ) ∈ On ) ) ) |
37 |
|
vex |
⊢ 𝑥 ∈ V |
38 |
|
iunon |
⊢ ( ( 𝑥 ∈ V ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ∈ On ) → ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ∈ On ) |
39 |
37 38
|
mpan |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ∈ On → ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ∈ On ) |
40 |
|
oelim |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
41 |
37 40
|
mpanlr1 |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
42 |
41
|
anasss |
⊢ ( ( 𝐴 ∈ On ∧ ( Lim 𝑥 ∧ ∅ ∈ 𝐴 ) ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
43 |
42
|
an12s |
⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
44 |
43
|
eleq1d |
⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) → ( ( 𝐴 ↑o 𝑥 ) ∈ On ↔ ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ∈ On ) ) |
45 |
39 44
|
syl5ibr |
⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ∈ On → ( 𝐴 ↑o 𝑥 ) ∈ On ) ) |
46 |
45
|
ex |
⊢ ( Lim 𝑥 → ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ∈ On → ( 𝐴 ↑o 𝑥 ) ∈ On ) ) ) |
47 |
19 21 23 25 28 36 46
|
tfinds3 |
⊢ ( 𝐵 ∈ On → ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) ) |
48 |
47
|
expd |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 → ( 𝐴 ↑o 𝐵 ) ∈ On ) ) ) |
49 |
48
|
com12 |
⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( ∅ ∈ 𝐴 → ( 𝐴 ↑o 𝐵 ) ∈ On ) ) ) |
50 |
49
|
imp31 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
51 |
17 50
|
oe0lem |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |