Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } = ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } |
2 |
1
|
oeeulem |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ∈ On ∧ ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 ↑o suc ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ) ) |
3 |
2
|
simp1d |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ∈ On ) |
4 |
|
fvexd |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( 1st ‘ ( ℩ 𝑑 ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ·o 𝑏 ) +o 𝑐 ) = 𝐵 ) ) ) ∈ V ) |
5 |
|
fvexd |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( 2nd ‘ ( ℩ 𝑑 ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ·o 𝑏 ) +o 𝑐 ) = 𝐵 ) ) ) ∈ V ) |
6 |
|
eqid |
⊢ ( ℩ 𝑑 ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ·o 𝑏 ) +o 𝑐 ) = 𝐵 ) ) = ( ℩ 𝑑 ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ·o 𝑏 ) +o 𝑐 ) = 𝐵 ) ) |
7 |
|
eqid |
⊢ ( 1st ‘ ( ℩ 𝑑 ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ·o 𝑏 ) +o 𝑐 ) = 𝐵 ) ) ) = ( 1st ‘ ( ℩ 𝑑 ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ·o 𝑏 ) +o 𝑐 ) = 𝐵 ) ) ) |
8 |
|
eqid |
⊢ ( 2nd ‘ ( ℩ 𝑑 ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ·o 𝑏 ) +o 𝑐 ) = 𝐵 ) ) ) = ( 2nd ‘ ( ℩ 𝑑 ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ·o 𝑏 ) +o 𝑐 ) = 𝐵 ) ) ) |
9 |
1 6 7 8
|
oeeui |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ) ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ↔ ( 𝑥 = ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ∧ 𝑦 = ( 1st ‘ ( ℩ 𝑑 ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ·o 𝑏 ) +o 𝑐 ) = 𝐵 ) ) ) ∧ 𝑧 = ( 2nd ‘ ( ℩ 𝑑 ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( ( 𝐴 ↑o ∪ ∩ { 𝑎 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑎 ) } ) ·o 𝑏 ) +o 𝑐 ) = 𝐵 ) ) ) ) ) ) |
10 |
3 4 5 9
|
euotd |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ∃! 𝑤 ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ) ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ) |
11 |
|
df-3an |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ) ↔ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ∧ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ) ) |
12 |
11
|
biancomi |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ) ↔ ( 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ) ) |
13 |
12
|
anbi1i |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ) ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ↔ ( ( 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ) ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) |
14 |
13
|
anbi2i |
⊢ ( ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ) ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ↔ ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ) ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ) |
15 |
|
an12 |
⊢ ( ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ) ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ↔ ( ( 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ) ∧ ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ) |
16 |
|
anass |
⊢ ( ( ( 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ) ∧ ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ↔ ( 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ∧ ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ) ) |
17 |
14 15 16
|
3bitri |
⊢ ( ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ) ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ↔ ( 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ∧ ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ) ) |
18 |
17
|
exbii |
⊢ ( ∃ 𝑧 ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ) ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ↔ ∃ 𝑧 ( 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ∧ ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ) ) |
19 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ∧ ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ↔ ∃ 𝑧 ( 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ∧ ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ) ) |
20 |
|
r19.42v |
⊢ ( ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ∧ ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ↔ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ∧ ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ) |
21 |
18 19 20
|
3bitr2i |
⊢ ( ∃ 𝑧 ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ) ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ↔ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ∧ ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ) |
22 |
21
|
2exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ) ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ∧ ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ) |
23 |
|
r2ex |
⊢ ( ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ) ∧ ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ) |
24 |
22 23
|
bitr4i |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ) ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ↔ ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) |
25 |
24
|
eubii |
⊢ ( ∃! 𝑤 ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ) ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) ↔ ∃! 𝑤 ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) |
26 |
10 25
|
sylib |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ∃! 𝑤 ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ( 𝐴 ∖ 1o ) ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑥 ) ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) |