| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oeeu.1 | ⊢ 𝑋  =  ∪  ∩  { 𝑥  ∈  On  ∣  𝐵  ∈  ( 𝐴  ↑o  𝑥 ) } | 
						
							| 2 |  | oeeu.2 | ⊢ 𝑃  =  ( ℩ 𝑤 ∃ 𝑦  ∈  On ∃ 𝑧  ∈  ( 𝐴  ↑o  𝑋 ) ( 𝑤  =  〈 𝑦 ,  𝑧 〉  ∧  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑦 )  +o  𝑧 )  =  𝐵 ) ) | 
						
							| 3 |  | oeeu.3 | ⊢ 𝑌  =  ( 1st  ‘ 𝑃 ) | 
						
							| 4 |  | oeeu.4 | ⊢ 𝑍  =  ( 2nd  ‘ 𝑃 ) | 
						
							| 5 |  | eldifi | ⊢ ( 𝐴  ∈  ( On  ∖  2o )  →  𝐴  ∈  On ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  →  𝐴  ∈  On ) | 
						
							| 7 | 6 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  𝐴  ∈  On ) | 
						
							| 8 |  | simprl | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  𝐶  ∈  On ) | 
						
							| 9 |  | oecl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐶  ∈  On )  →  ( 𝐴  ↑o  𝐶 )  ∈  On ) | 
						
							| 10 | 7 8 9 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( 𝐴  ↑o  𝐶 )  ∈  On ) | 
						
							| 11 |  | om1 | ⊢ ( ( 𝐴  ↑o  𝐶 )  ∈  On  →  ( ( 𝐴  ↑o  𝐶 )  ·o  1o )  =  ( 𝐴  ↑o  𝐶 ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( ( 𝐴  ↑o  𝐶 )  ·o  1o )  =  ( 𝐴  ↑o  𝐶 ) ) | 
						
							| 13 |  | df1o2 | ⊢ 1o  =  { ∅ } | 
						
							| 14 |  | dif1o | ⊢ ( 𝐷  ∈  ( 𝐴  ∖  1o )  ↔  ( 𝐷  ∈  𝐴  ∧  𝐷  ≠  ∅ ) ) | 
						
							| 15 | 14 | simprbi | ⊢ ( 𝐷  ∈  ( 𝐴  ∖  1o )  →  𝐷  ≠  ∅ ) | 
						
							| 16 | 15 | ad2antll | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  𝐷  ≠  ∅ ) | 
						
							| 17 |  | eldifi | ⊢ ( 𝐷  ∈  ( 𝐴  ∖  1o )  →  𝐷  ∈  𝐴 ) | 
						
							| 18 | 17 | ad2antll | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  𝐷  ∈  𝐴 ) | 
						
							| 19 |  | onelon | ⊢ ( ( 𝐴  ∈  On  ∧  𝐷  ∈  𝐴 )  →  𝐷  ∈  On ) | 
						
							| 20 | 7 18 19 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  𝐷  ∈  On ) | 
						
							| 21 |  | on0eln0 | ⊢ ( 𝐷  ∈  On  →  ( ∅  ∈  𝐷  ↔  𝐷  ≠  ∅ ) ) | 
						
							| 22 | 20 21 | syl | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( ∅  ∈  𝐷  ↔  𝐷  ≠  ∅ ) ) | 
						
							| 23 | 16 22 | mpbird | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ∅  ∈  𝐷 ) | 
						
							| 24 | 23 | snssd | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  { ∅ }  ⊆  𝐷 ) | 
						
							| 25 | 13 24 | eqsstrid | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  1o  ⊆  𝐷 ) | 
						
							| 26 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 27 | 26 | a1i | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  1o  ∈  On ) | 
						
							| 28 |  | omwordi | ⊢ ( ( 1o  ∈  On  ∧  𝐷  ∈  On  ∧  ( 𝐴  ↑o  𝐶 )  ∈  On )  →  ( 1o  ⊆  𝐷  →  ( ( 𝐴  ↑o  𝐶 )  ·o  1o )  ⊆  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 ) ) ) | 
						
							| 29 | 27 20 10 28 | syl3anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( 1o  ⊆  𝐷  →  ( ( 𝐴  ↑o  𝐶 )  ·o  1o )  ⊆  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 ) ) ) | 
						
							| 30 | 25 29 | mpd | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( ( 𝐴  ↑o  𝐶 )  ·o  1o )  ⊆  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 ) ) | 
						
							| 31 | 12 30 | eqsstrrd | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( 𝐴  ↑o  𝐶 )  ⊆  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 ) ) | 
						
							| 32 |  | omcl | ⊢ ( ( ( 𝐴  ↑o  𝐶 )  ∈  On  ∧  𝐷  ∈  On )  →  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  ∈  On ) | 
						
							| 33 | 10 20 32 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  ∈  On ) | 
						
							| 34 |  | simplrl | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  𝐸  ∈  ( 𝐴  ↑o  𝐶 ) ) | 
						
							| 35 |  | onelon | ⊢ ( ( ( 𝐴  ↑o  𝐶 )  ∈  On  ∧  𝐸  ∈  ( 𝐴  ↑o  𝐶 ) )  →  𝐸  ∈  On ) | 
						
							| 36 | 10 34 35 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  𝐸  ∈  On ) | 
						
							| 37 |  | oaword1 | ⊢ ( ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  ∈  On  ∧  𝐸  ∈  On )  →  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  ⊆  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 ) ) | 
						
							| 38 | 33 36 37 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  ⊆  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 ) ) | 
						
							| 39 |  | simplrr | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) | 
						
							| 40 | 38 39 | sseqtrd | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  ⊆  𝐵 ) | 
						
							| 41 | 31 40 | sstrd | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( 𝐴  ↑o  𝐶 )  ⊆  𝐵 ) | 
						
							| 42 | 1 | oeeulem | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  →  ( 𝑋  ∈  On  ∧  ( 𝐴  ↑o  𝑋 )  ⊆  𝐵  ∧  𝐵  ∈  ( 𝐴  ↑o  suc  𝑋 ) ) ) | 
						
							| 43 | 42 | simp3d | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  →  𝐵  ∈  ( 𝐴  ↑o  suc  𝑋 ) ) | 
						
							| 44 | 43 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  𝐵  ∈  ( 𝐴  ↑o  suc  𝑋 ) ) | 
						
							| 45 | 42 | simp1d | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  →  𝑋  ∈  On ) | 
						
							| 46 | 45 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  𝑋  ∈  On ) | 
						
							| 47 |  | onsuc | ⊢ ( 𝑋  ∈  On  →  suc  𝑋  ∈  On ) | 
						
							| 48 | 46 47 | syl | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  suc  𝑋  ∈  On ) | 
						
							| 49 |  | oecl | ⊢ ( ( 𝐴  ∈  On  ∧  suc  𝑋  ∈  On )  →  ( 𝐴  ↑o  suc  𝑋 )  ∈  On ) | 
						
							| 50 | 7 48 49 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( 𝐴  ↑o  suc  𝑋 )  ∈  On ) | 
						
							| 51 |  | ontr2 | ⊢ ( ( ( 𝐴  ↑o  𝐶 )  ∈  On  ∧  ( 𝐴  ↑o  suc  𝑋 )  ∈  On )  →  ( ( ( 𝐴  ↑o  𝐶 )  ⊆  𝐵  ∧  𝐵  ∈  ( 𝐴  ↑o  suc  𝑋 ) )  →  ( 𝐴  ↑o  𝐶 )  ∈  ( 𝐴  ↑o  suc  𝑋 ) ) ) | 
						
							| 52 | 10 50 51 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( ( ( 𝐴  ↑o  𝐶 )  ⊆  𝐵  ∧  𝐵  ∈  ( 𝐴  ↑o  suc  𝑋 ) )  →  ( 𝐴  ↑o  𝐶 )  ∈  ( 𝐴  ↑o  suc  𝑋 ) ) ) | 
						
							| 53 | 41 44 52 | mp2and | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( 𝐴  ↑o  𝐶 )  ∈  ( 𝐴  ↑o  suc  𝑋 ) ) | 
						
							| 54 |  | simplll | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  𝐴  ∈  ( On  ∖  2o ) ) | 
						
							| 55 |  | oeord | ⊢ ( ( 𝐶  ∈  On  ∧  suc  𝑋  ∈  On  ∧  𝐴  ∈  ( On  ∖  2o ) )  →  ( 𝐶  ∈  suc  𝑋  ↔  ( 𝐴  ↑o  𝐶 )  ∈  ( 𝐴  ↑o  suc  𝑋 ) ) ) | 
						
							| 56 | 8 48 54 55 | syl3anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( 𝐶  ∈  suc  𝑋  ↔  ( 𝐴  ↑o  𝐶 )  ∈  ( 𝐴  ↑o  suc  𝑋 ) ) ) | 
						
							| 57 | 53 56 | mpbird | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  𝐶  ∈  suc  𝑋 ) | 
						
							| 58 |  | onsssuc | ⊢ ( ( 𝐶  ∈  On  ∧  𝑋  ∈  On )  →  ( 𝐶  ⊆  𝑋  ↔  𝐶  ∈  suc  𝑋 ) ) | 
						
							| 59 | 8 46 58 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( 𝐶  ⊆  𝑋  ↔  𝐶  ∈  suc  𝑋 ) ) | 
						
							| 60 | 57 59 | mpbird | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  𝐶  ⊆  𝑋 ) | 
						
							| 61 | 42 | simp2d | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  →  ( 𝐴  ↑o  𝑋 )  ⊆  𝐵 ) | 
						
							| 62 | 61 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( 𝐴  ↑o  𝑋 )  ⊆  𝐵 ) | 
						
							| 63 |  | eloni | ⊢ ( 𝐴  ∈  On  →  Ord  𝐴 ) | 
						
							| 64 | 7 63 | syl | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  Ord  𝐴 ) | 
						
							| 65 |  | ordsucss | ⊢ ( Ord  𝐴  →  ( 𝐷  ∈  𝐴  →  suc  𝐷  ⊆  𝐴 ) ) | 
						
							| 66 | 64 18 65 | sylc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  suc  𝐷  ⊆  𝐴 ) | 
						
							| 67 |  | onsuc | ⊢ ( 𝐷  ∈  On  →  suc  𝐷  ∈  On ) | 
						
							| 68 | 20 67 | syl | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  suc  𝐷  ∈  On ) | 
						
							| 69 |  | dif20el | ⊢ ( 𝐴  ∈  ( On  ∖  2o )  →  ∅  ∈  𝐴 ) | 
						
							| 70 | 54 69 | syl | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ∅  ∈  𝐴 ) | 
						
							| 71 |  | oen0 | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐶  ∈  On )  ∧  ∅  ∈  𝐴 )  →  ∅  ∈  ( 𝐴  ↑o  𝐶 ) ) | 
						
							| 72 | 7 8 70 71 | syl21anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ∅  ∈  ( 𝐴  ↑o  𝐶 ) ) | 
						
							| 73 |  | omword | ⊢ ( ( ( suc  𝐷  ∈  On  ∧  𝐴  ∈  On  ∧  ( 𝐴  ↑o  𝐶 )  ∈  On )  ∧  ∅  ∈  ( 𝐴  ↑o  𝐶 ) )  →  ( suc  𝐷  ⊆  𝐴  ↔  ( ( 𝐴  ↑o  𝐶 )  ·o  suc  𝐷 )  ⊆  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐴 ) ) ) | 
						
							| 74 | 68 7 10 72 73 | syl31anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( suc  𝐷  ⊆  𝐴  ↔  ( ( 𝐴  ↑o  𝐶 )  ·o  suc  𝐷 )  ⊆  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐴 ) ) ) | 
						
							| 75 | 66 74 | mpbid | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( ( 𝐴  ↑o  𝐶 )  ·o  suc  𝐷 )  ⊆  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐴 ) ) | 
						
							| 76 |  | oaord | ⊢ ( ( 𝐸  ∈  On  ∧  ( 𝐴  ↑o  𝐶 )  ∈  On  ∧  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  ∈  On )  →  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ↔  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  ∈  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  ( 𝐴  ↑o  𝐶 ) ) ) ) | 
						
							| 77 | 36 10 33 76 | syl3anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ↔  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  ∈  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  ( 𝐴  ↑o  𝐶 ) ) ) ) | 
						
							| 78 | 34 77 | mpbid | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  ∈  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  ( 𝐴  ↑o  𝐶 ) ) ) | 
						
							| 79 | 39 78 | eqeltrrd | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  𝐵  ∈  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  ( 𝐴  ↑o  𝐶 ) ) ) | 
						
							| 80 |  | odi | ⊢ ( ( ( 𝐴  ↑o  𝐶 )  ∈  On  ∧  𝐷  ∈  On  ∧  1o  ∈  On )  →  ( ( 𝐴  ↑o  𝐶 )  ·o  ( 𝐷  +o  1o ) )  =  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  ( ( 𝐴  ↑o  𝐶 )  ·o  1o ) ) ) | 
						
							| 81 | 10 20 27 80 | syl3anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( ( 𝐴  ↑o  𝐶 )  ·o  ( 𝐷  +o  1o ) )  =  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  ( ( 𝐴  ↑o  𝐶 )  ·o  1o ) ) ) | 
						
							| 82 |  | oa1suc | ⊢ ( 𝐷  ∈  On  →  ( 𝐷  +o  1o )  =  suc  𝐷 ) | 
						
							| 83 | 20 82 | syl | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( 𝐷  +o  1o )  =  suc  𝐷 ) | 
						
							| 84 | 83 | oveq2d | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( ( 𝐴  ↑o  𝐶 )  ·o  ( 𝐷  +o  1o ) )  =  ( ( 𝐴  ↑o  𝐶 )  ·o  suc  𝐷 ) ) | 
						
							| 85 | 12 | oveq2d | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  ( ( 𝐴  ↑o  𝐶 )  ·o  1o ) )  =  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  ( 𝐴  ↑o  𝐶 ) ) ) | 
						
							| 86 | 81 84 85 | 3eqtr3d | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( ( 𝐴  ↑o  𝐶 )  ·o  suc  𝐷 )  =  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  ( 𝐴  ↑o  𝐶 ) ) ) | 
						
							| 87 | 79 86 | eleqtrrd | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  𝐵  ∈  ( ( 𝐴  ↑o  𝐶 )  ·o  suc  𝐷 ) ) | 
						
							| 88 | 75 87 | sseldd | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  𝐵  ∈  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐴 ) ) | 
						
							| 89 |  | oesuc | ⊢ ( ( 𝐴  ∈  On  ∧  𝐶  ∈  On )  →  ( 𝐴  ↑o  suc  𝐶 )  =  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐴 ) ) | 
						
							| 90 | 7 8 89 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( 𝐴  ↑o  suc  𝐶 )  =  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐴 ) ) | 
						
							| 91 | 88 90 | eleqtrrd | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  𝐵  ∈  ( 𝐴  ↑o  suc  𝐶 ) ) | 
						
							| 92 |  | oecl | ⊢ ( ( 𝐴  ∈  On  ∧  𝑋  ∈  On )  →  ( 𝐴  ↑o  𝑋 )  ∈  On ) | 
						
							| 93 | 7 46 92 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( 𝐴  ↑o  𝑋 )  ∈  On ) | 
						
							| 94 |  | onsuc | ⊢ ( 𝐶  ∈  On  →  suc  𝐶  ∈  On ) | 
						
							| 95 | 94 | ad2antrl | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  suc  𝐶  ∈  On ) | 
						
							| 96 |  | oecl | ⊢ ( ( 𝐴  ∈  On  ∧  suc  𝐶  ∈  On )  →  ( 𝐴  ↑o  suc  𝐶 )  ∈  On ) | 
						
							| 97 | 7 95 96 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( 𝐴  ↑o  suc  𝐶 )  ∈  On ) | 
						
							| 98 |  | ontr2 | ⊢ ( ( ( 𝐴  ↑o  𝑋 )  ∈  On  ∧  ( 𝐴  ↑o  suc  𝐶 )  ∈  On )  →  ( ( ( 𝐴  ↑o  𝑋 )  ⊆  𝐵  ∧  𝐵  ∈  ( 𝐴  ↑o  suc  𝐶 ) )  →  ( 𝐴  ↑o  𝑋 )  ∈  ( 𝐴  ↑o  suc  𝐶 ) ) ) | 
						
							| 99 | 93 97 98 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( ( ( 𝐴  ↑o  𝑋 )  ⊆  𝐵  ∧  𝐵  ∈  ( 𝐴  ↑o  suc  𝐶 ) )  →  ( 𝐴  ↑o  𝑋 )  ∈  ( 𝐴  ↑o  suc  𝐶 ) ) ) | 
						
							| 100 | 62 91 99 | mp2and | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( 𝐴  ↑o  𝑋 )  ∈  ( 𝐴  ↑o  suc  𝐶 ) ) | 
						
							| 101 |  | oeord | ⊢ ( ( 𝑋  ∈  On  ∧  suc  𝐶  ∈  On  ∧  𝐴  ∈  ( On  ∖  2o ) )  →  ( 𝑋  ∈  suc  𝐶  ↔  ( 𝐴  ↑o  𝑋 )  ∈  ( 𝐴  ↑o  suc  𝐶 ) ) ) | 
						
							| 102 | 46 95 54 101 | syl3anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( 𝑋  ∈  suc  𝐶  ↔  ( 𝐴  ↑o  𝑋 )  ∈  ( 𝐴  ↑o  suc  𝐶 ) ) ) | 
						
							| 103 | 100 102 | mpbird | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  𝑋  ∈  suc  𝐶 ) | 
						
							| 104 |  | onsssuc | ⊢ ( ( 𝑋  ∈  On  ∧  𝐶  ∈  On )  →  ( 𝑋  ⊆  𝐶  ↔  𝑋  ∈  suc  𝐶 ) ) | 
						
							| 105 | 46 8 104 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( 𝑋  ⊆  𝐶  ↔  𝑋  ∈  suc  𝐶 ) ) | 
						
							| 106 | 103 105 | mpbird | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  𝑋  ⊆  𝐶 ) | 
						
							| 107 | 60 106 | eqssd | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  𝐶  =  𝑋 ) | 
						
							| 108 | 107 20 | jca | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) )  →  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) ) | 
						
							| 109 |  | simprl | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  𝐶  =  𝑋 ) | 
						
							| 110 | 45 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  𝑋  ∈  On ) | 
						
							| 111 | 109 110 | eqeltrd | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  𝐶  ∈  On ) | 
						
							| 112 | 6 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  𝐴  ∈  On ) | 
						
							| 113 | 112 111 9 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ( 𝐴  ↑o  𝐶 )  ∈  On ) | 
						
							| 114 |  | simprr | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  𝐷  ∈  On ) | 
						
							| 115 | 113 114 32 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  ∈  On ) | 
						
							| 116 |  | simplrl | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  𝐸  ∈  ( 𝐴  ↑o  𝐶 ) ) | 
						
							| 117 | 113 116 35 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  𝐸  ∈  On ) | 
						
							| 118 | 115 117 37 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  ⊆  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 ) ) | 
						
							| 119 |  | simplrr | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) | 
						
							| 120 | 118 119 | sseqtrd | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  ⊆  𝐵 ) | 
						
							| 121 | 43 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  𝐵  ∈  ( 𝐴  ↑o  suc  𝑋 ) ) | 
						
							| 122 |  | suceq | ⊢ ( 𝐶  =  𝑋  →  suc  𝐶  =  suc  𝑋 ) | 
						
							| 123 | 122 | ad2antrl | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  suc  𝐶  =  suc  𝑋 ) | 
						
							| 124 | 123 | oveq2d | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ( 𝐴  ↑o  suc  𝐶 )  =  ( 𝐴  ↑o  suc  𝑋 ) ) | 
						
							| 125 | 112 111 89 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ( 𝐴  ↑o  suc  𝐶 )  =  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐴 ) ) | 
						
							| 126 | 124 125 | eqtr3d | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ( 𝐴  ↑o  suc  𝑋 )  =  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐴 ) ) | 
						
							| 127 | 121 126 | eleqtrd | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  𝐵  ∈  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐴 ) ) | 
						
							| 128 |  | omcl | ⊢ ( ( ( 𝐴  ↑o  𝐶 )  ∈  On  ∧  𝐴  ∈  On )  →  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐴 )  ∈  On ) | 
						
							| 129 | 113 112 128 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐴 )  ∈  On ) | 
						
							| 130 |  | ontr2 | ⊢ ( ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  ∈  On  ∧  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐴 )  ∈  On )  →  ( ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  ⊆  𝐵  ∧  𝐵  ∈  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐴 ) )  →  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  ∈  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐴 ) ) ) | 
						
							| 131 | 115 129 130 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ( ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  ⊆  𝐵  ∧  𝐵  ∈  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐴 ) )  →  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  ∈  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐴 ) ) ) | 
						
							| 132 | 120 127 131 | mp2and | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  ∈  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐴 ) ) | 
						
							| 133 | 69 | adantr | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  →  ∅  ∈  𝐴 ) | 
						
							| 134 | 133 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ∅  ∈  𝐴 ) | 
						
							| 135 | 112 111 134 71 | syl21anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ∅  ∈  ( 𝐴  ↑o  𝐶 ) ) | 
						
							| 136 |  | omord2 | ⊢ ( ( ( 𝐷  ∈  On  ∧  𝐴  ∈  On  ∧  ( 𝐴  ↑o  𝐶 )  ∈  On )  ∧  ∅  ∈  ( 𝐴  ↑o  𝐶 ) )  →  ( 𝐷  ∈  𝐴  ↔  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  ∈  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐴 ) ) ) | 
						
							| 137 | 114 112 113 135 136 | syl31anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ( 𝐷  ∈  𝐴  ↔  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  ∈  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐴 ) ) ) | 
						
							| 138 | 132 137 | mpbird | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  𝐷  ∈  𝐴 ) | 
						
							| 139 | 109 | oveq2d | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ( 𝐴  ↑o  𝐶 )  =  ( 𝐴  ↑o  𝑋 ) ) | 
						
							| 140 | 61 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ( 𝐴  ↑o  𝑋 )  ⊆  𝐵 ) | 
						
							| 141 | 139 140 | eqsstrd | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ( 𝐴  ↑o  𝐶 )  ⊆  𝐵 ) | 
						
							| 142 |  | eldifi | ⊢ ( 𝐵  ∈  ( On  ∖  1o )  →  𝐵  ∈  On ) | 
						
							| 143 | 142 | adantl | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  →  𝐵  ∈  On ) | 
						
							| 144 | 143 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  𝐵  ∈  On ) | 
						
							| 145 |  | ontri1 | ⊢ ( ( ( 𝐴  ↑o  𝐶 )  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  ↑o  𝐶 )  ⊆  𝐵  ↔  ¬  𝐵  ∈  ( 𝐴  ↑o  𝐶 ) ) ) | 
						
							| 146 | 113 144 145 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ( ( 𝐴  ↑o  𝐶 )  ⊆  𝐵  ↔  ¬  𝐵  ∈  ( 𝐴  ↑o  𝐶 ) ) ) | 
						
							| 147 | 141 146 | mpbid | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ¬  𝐵  ∈  ( 𝐴  ↑o  𝐶 ) ) | 
						
							| 148 |  | om0 | ⊢ ( ( 𝐴  ↑o  𝐶 )  ∈  On  →  ( ( 𝐴  ↑o  𝐶 )  ·o  ∅ )  =  ∅ ) | 
						
							| 149 | 113 148 | syl | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ( ( 𝐴  ↑o  𝐶 )  ·o  ∅ )  =  ∅ ) | 
						
							| 150 | 149 | oveq1d | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ( ( ( 𝐴  ↑o  𝐶 )  ·o  ∅ )  +o  𝐸 )  =  ( ∅  +o  𝐸 ) ) | 
						
							| 151 |  | oa0r | ⊢ ( 𝐸  ∈  On  →  ( ∅  +o  𝐸 )  =  𝐸 ) | 
						
							| 152 | 117 151 | syl | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ( ∅  +o  𝐸 )  =  𝐸 ) | 
						
							| 153 | 150 152 | eqtrd | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ( ( ( 𝐴  ↑o  𝐶 )  ·o  ∅ )  +o  𝐸 )  =  𝐸 ) | 
						
							| 154 | 153 116 | eqeltrd | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ( ( ( 𝐴  ↑o  𝐶 )  ·o  ∅ )  +o  𝐸 )  ∈  ( 𝐴  ↑o  𝐶 ) ) | 
						
							| 155 |  | oveq2 | ⊢ ( 𝐷  =  ∅  →  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  =  ( ( 𝐴  ↑o  𝐶 )  ·o  ∅ ) ) | 
						
							| 156 | 155 | oveq1d | ⊢ ( 𝐷  =  ∅  →  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  ( ( ( 𝐴  ↑o  𝐶 )  ·o  ∅ )  +o  𝐸 ) ) | 
						
							| 157 | 156 | eleq1d | ⊢ ( 𝐷  =  ∅  →  ( ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  ∈  ( 𝐴  ↑o  𝐶 )  ↔  ( ( ( 𝐴  ↑o  𝐶 )  ·o  ∅ )  +o  𝐸 )  ∈  ( 𝐴  ↑o  𝐶 ) ) ) | 
						
							| 158 | 154 157 | syl5ibrcom | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ( 𝐷  =  ∅  →  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  ∈  ( 𝐴  ↑o  𝐶 ) ) ) | 
						
							| 159 | 119 | eleq1d | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ( ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  ∈  ( 𝐴  ↑o  𝐶 )  ↔  𝐵  ∈  ( 𝐴  ↑o  𝐶 ) ) ) | 
						
							| 160 | 158 159 | sylibd | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ( 𝐷  =  ∅  →  𝐵  ∈  ( 𝐴  ↑o  𝐶 ) ) ) | 
						
							| 161 | 160 | necon3bd | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ( ¬  𝐵  ∈  ( 𝐴  ↑o  𝐶 )  →  𝐷  ≠  ∅ ) ) | 
						
							| 162 | 147 161 | mpd | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  𝐷  ≠  ∅ ) | 
						
							| 163 | 138 162 14 | sylanbrc | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  𝐷  ∈  ( 𝐴  ∖  1o ) ) | 
						
							| 164 | 111 163 | jca | ⊢ ( ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ∧  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) )  →  ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) ) ) | 
						
							| 165 | 108 164 | impbida | ⊢ ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  →  ( ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) )  ↔  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) ) ) | 
						
							| 166 | 165 | ex | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  →  ( ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 )  →  ( ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) )  ↔  ( 𝐶  =  𝑋  ∧  𝐷  ∈  On ) ) ) ) | 
						
							| 167 | 166 | pm5.32rd | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  →  ( ( ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ↔  ( ( 𝐶  =  𝑋  ∧  𝐷  ∈  On )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) ) ) ) | 
						
							| 168 |  | anass | ⊢ ( ( ( 𝐶  =  𝑋  ∧  𝐷  ∈  On )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ↔  ( 𝐶  =  𝑋  ∧  ( 𝐷  ∈  On  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) ) ) ) | 
						
							| 169 | 167 168 | bitrdi | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  →  ( ( ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ↔  ( 𝐶  =  𝑋  ∧  ( 𝐷  ∈  On  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) ) ) ) ) | 
						
							| 170 |  | 3anass | ⊢ ( ( 𝐷  ∈  On  ∧  𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 )  ↔  ( 𝐷  ∈  On  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) ) ) | 
						
							| 171 |  | oveq2 | ⊢ ( 𝐶  =  𝑋  →  ( 𝐴  ↑o  𝐶 )  =  ( 𝐴  ↑o  𝑋 ) ) | 
						
							| 172 | 171 | eleq2d | ⊢ ( 𝐶  =  𝑋  →  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ↔  𝐸  ∈  ( 𝐴  ↑o  𝑋 ) ) ) | 
						
							| 173 | 171 | oveq1d | ⊢ ( 𝐶  =  𝑋  →  ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  =  ( ( 𝐴  ↑o  𝑋 )  ·o  𝐷 ) ) | 
						
							| 174 | 173 | oveq1d | ⊢ ( 𝐶  =  𝑋  →  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝐷 )  +o  𝐸 ) ) | 
						
							| 175 | 174 | eqeq1d | ⊢ ( 𝐶  =  𝑋  →  ( ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵  ↔  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) ) | 
						
							| 176 | 172 175 | 3anbi23d | ⊢ ( 𝐶  =  𝑋  →  ( ( 𝐷  ∈  On  ∧  𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 )  ↔  ( 𝐷  ∈  On  ∧  𝐸  ∈  ( 𝐴  ↑o  𝑋 )  ∧  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) ) ) | 
						
							| 177 | 170 176 | bitr3id | ⊢ ( 𝐶  =  𝑋  →  ( ( 𝐷  ∈  On  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ↔  ( 𝐷  ∈  On  ∧  𝐸  ∈  ( 𝐴  ↑o  𝑋 )  ∧  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) ) ) | 
						
							| 178 | 6 45 92 | syl2anc | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  →  ( 𝐴  ↑o  𝑋 )  ∈  On ) | 
						
							| 179 |  | oen0 | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝑋  ∈  On )  ∧  ∅  ∈  𝐴 )  →  ∅  ∈  ( 𝐴  ↑o  𝑋 ) ) | 
						
							| 180 | 6 45 133 179 | syl21anc | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  →  ∅  ∈  ( 𝐴  ↑o  𝑋 ) ) | 
						
							| 181 | 180 | ne0d | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  →  ( 𝐴  ↑o  𝑋 )  ≠  ∅ ) | 
						
							| 182 |  | omeu | ⊢ ( ( ( 𝐴  ↑o  𝑋 )  ∈  On  ∧  𝐵  ∈  On  ∧  ( 𝐴  ↑o  𝑋 )  ≠  ∅ )  →  ∃! 𝑎 ∃ 𝑑  ∈  On ∃ 𝑒  ∈  ( 𝐴  ↑o  𝑋 ) ( 𝑎  =  〈 𝑑 ,  𝑒 〉  ∧  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑑 )  +o  𝑒 )  =  𝐵 ) ) | 
						
							| 183 |  | opeq1 | ⊢ ( 𝑦  =  𝑑  →  〈 𝑦 ,  𝑧 〉  =  〈 𝑑 ,  𝑧 〉 ) | 
						
							| 184 | 183 | eqeq2d | ⊢ ( 𝑦  =  𝑑  →  ( 𝑤  =  〈 𝑦 ,  𝑧 〉  ↔  𝑤  =  〈 𝑑 ,  𝑧 〉 ) ) | 
						
							| 185 |  | oveq2 | ⊢ ( 𝑦  =  𝑑  →  ( ( 𝐴  ↑o  𝑋 )  ·o  𝑦 )  =  ( ( 𝐴  ↑o  𝑋 )  ·o  𝑑 ) ) | 
						
							| 186 | 185 | oveq1d | ⊢ ( 𝑦  =  𝑑  →  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑦 )  +o  𝑧 )  =  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑑 )  +o  𝑧 ) ) | 
						
							| 187 | 186 | eqeq1d | ⊢ ( 𝑦  =  𝑑  →  ( ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑦 )  +o  𝑧 )  =  𝐵  ↔  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑑 )  +o  𝑧 )  =  𝐵 ) ) | 
						
							| 188 | 184 187 | anbi12d | ⊢ ( 𝑦  =  𝑑  →  ( ( 𝑤  =  〈 𝑦 ,  𝑧 〉  ∧  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑦 )  +o  𝑧 )  =  𝐵 )  ↔  ( 𝑤  =  〈 𝑑 ,  𝑧 〉  ∧  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑑 )  +o  𝑧 )  =  𝐵 ) ) ) | 
						
							| 189 |  | opeq2 | ⊢ ( 𝑧  =  𝑒  →  〈 𝑑 ,  𝑧 〉  =  〈 𝑑 ,  𝑒 〉 ) | 
						
							| 190 | 189 | eqeq2d | ⊢ ( 𝑧  =  𝑒  →  ( 𝑤  =  〈 𝑑 ,  𝑧 〉  ↔  𝑤  =  〈 𝑑 ,  𝑒 〉 ) ) | 
						
							| 191 |  | oveq2 | ⊢ ( 𝑧  =  𝑒  →  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑑 )  +o  𝑧 )  =  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑑 )  +o  𝑒 ) ) | 
						
							| 192 | 191 | eqeq1d | ⊢ ( 𝑧  =  𝑒  →  ( ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑑 )  +o  𝑧 )  =  𝐵  ↔  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑑 )  +o  𝑒 )  =  𝐵 ) ) | 
						
							| 193 | 190 192 | anbi12d | ⊢ ( 𝑧  =  𝑒  →  ( ( 𝑤  =  〈 𝑑 ,  𝑧 〉  ∧  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑑 )  +o  𝑧 )  =  𝐵 )  ↔  ( 𝑤  =  〈 𝑑 ,  𝑒 〉  ∧  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑑 )  +o  𝑒 )  =  𝐵 ) ) ) | 
						
							| 194 | 188 193 | cbvrex2vw | ⊢ ( ∃ 𝑦  ∈  On ∃ 𝑧  ∈  ( 𝐴  ↑o  𝑋 ) ( 𝑤  =  〈 𝑦 ,  𝑧 〉  ∧  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑦 )  +o  𝑧 )  =  𝐵 )  ↔  ∃ 𝑑  ∈  On ∃ 𝑒  ∈  ( 𝐴  ↑o  𝑋 ) ( 𝑤  =  〈 𝑑 ,  𝑒 〉  ∧  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑑 )  +o  𝑒 )  =  𝐵 ) ) | 
						
							| 195 |  | eqeq1 | ⊢ ( 𝑤  =  𝑎  →  ( 𝑤  =  〈 𝑑 ,  𝑒 〉  ↔  𝑎  =  〈 𝑑 ,  𝑒 〉 ) ) | 
						
							| 196 | 195 | anbi1d | ⊢ ( 𝑤  =  𝑎  →  ( ( 𝑤  =  〈 𝑑 ,  𝑒 〉  ∧  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑑 )  +o  𝑒 )  =  𝐵 )  ↔  ( 𝑎  =  〈 𝑑 ,  𝑒 〉  ∧  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑑 )  +o  𝑒 )  =  𝐵 ) ) ) | 
						
							| 197 | 196 | 2rexbidv | ⊢ ( 𝑤  =  𝑎  →  ( ∃ 𝑑  ∈  On ∃ 𝑒  ∈  ( 𝐴  ↑o  𝑋 ) ( 𝑤  =  〈 𝑑 ,  𝑒 〉  ∧  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑑 )  +o  𝑒 )  =  𝐵 )  ↔  ∃ 𝑑  ∈  On ∃ 𝑒  ∈  ( 𝐴  ↑o  𝑋 ) ( 𝑎  =  〈 𝑑 ,  𝑒 〉  ∧  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑑 )  +o  𝑒 )  =  𝐵 ) ) ) | 
						
							| 198 | 194 197 | bitrid | ⊢ ( 𝑤  =  𝑎  →  ( ∃ 𝑦  ∈  On ∃ 𝑧  ∈  ( 𝐴  ↑o  𝑋 ) ( 𝑤  =  〈 𝑦 ,  𝑧 〉  ∧  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑦 )  +o  𝑧 )  =  𝐵 )  ↔  ∃ 𝑑  ∈  On ∃ 𝑒  ∈  ( 𝐴  ↑o  𝑋 ) ( 𝑎  =  〈 𝑑 ,  𝑒 〉  ∧  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑑 )  +o  𝑒 )  =  𝐵 ) ) ) | 
						
							| 199 | 198 | cbviotavw | ⊢ ( ℩ 𝑤 ∃ 𝑦  ∈  On ∃ 𝑧  ∈  ( 𝐴  ↑o  𝑋 ) ( 𝑤  =  〈 𝑦 ,  𝑧 〉  ∧  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑦 )  +o  𝑧 )  =  𝐵 ) )  =  ( ℩ 𝑎 ∃ 𝑑  ∈  On ∃ 𝑒  ∈  ( 𝐴  ↑o  𝑋 ) ( 𝑎  =  〈 𝑑 ,  𝑒 〉  ∧  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑑 )  +o  𝑒 )  =  𝐵 ) ) | 
						
							| 200 | 2 199 | eqtri | ⊢ 𝑃  =  ( ℩ 𝑎 ∃ 𝑑  ∈  On ∃ 𝑒  ∈  ( 𝐴  ↑o  𝑋 ) ( 𝑎  =  〈 𝑑 ,  𝑒 〉  ∧  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑑 )  +o  𝑒 )  =  𝐵 ) ) | 
						
							| 201 |  | oveq2 | ⊢ ( 𝑑  =  𝐷  →  ( ( 𝐴  ↑o  𝑋 )  ·o  𝑑 )  =  ( ( 𝐴  ↑o  𝑋 )  ·o  𝐷 ) ) | 
						
							| 202 | 201 | oveq1d | ⊢ ( 𝑑  =  𝐷  →  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑑 )  +o  𝑒 )  =  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝐷 )  +o  𝑒 ) ) | 
						
							| 203 | 202 | eqeq1d | ⊢ ( 𝑑  =  𝐷  →  ( ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑑 )  +o  𝑒 )  =  𝐵  ↔  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝐷 )  +o  𝑒 )  =  𝐵 ) ) | 
						
							| 204 |  | oveq2 | ⊢ ( 𝑒  =  𝐸  →  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝐷 )  +o  𝑒 )  =  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝐷 )  +o  𝐸 ) ) | 
						
							| 205 | 204 | eqeq1d | ⊢ ( 𝑒  =  𝐸  →  ( ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝐷 )  +o  𝑒 )  =  𝐵  ↔  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) ) | 
						
							| 206 | 200 3 4 203 205 | opiota | ⊢ ( ∃! 𝑎 ∃ 𝑑  ∈  On ∃ 𝑒  ∈  ( 𝐴  ↑o  𝑋 ) ( 𝑎  =  〈 𝑑 ,  𝑒 〉  ∧  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑑 )  +o  𝑒 )  =  𝐵 )  →  ( ( 𝐷  ∈  On  ∧  𝐸  ∈  ( 𝐴  ↑o  𝑋 )  ∧  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 )  ↔  ( 𝐷  =  𝑌  ∧  𝐸  =  𝑍 ) ) ) | 
						
							| 207 | 182 206 | syl | ⊢ ( ( ( 𝐴  ↑o  𝑋 )  ∈  On  ∧  𝐵  ∈  On  ∧  ( 𝐴  ↑o  𝑋 )  ≠  ∅ )  →  ( ( 𝐷  ∈  On  ∧  𝐸  ∈  ( 𝐴  ↑o  𝑋 )  ∧  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 )  ↔  ( 𝐷  =  𝑌  ∧  𝐸  =  𝑍 ) ) ) | 
						
							| 208 | 178 143 181 207 | syl3anc | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  →  ( ( 𝐷  ∈  On  ∧  𝐸  ∈  ( 𝐴  ↑o  𝑋 )  ∧  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 )  ↔  ( 𝐷  =  𝑌  ∧  𝐸  =  𝑍 ) ) ) | 
						
							| 209 | 177 208 | sylan9bbr | ⊢ ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  ∧  𝐶  =  𝑋 )  →  ( ( 𝐷  ∈  On  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ↔  ( 𝐷  =  𝑌  ∧  𝐸  =  𝑍 ) ) ) | 
						
							| 210 | 209 | pm5.32da | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  →  ( ( 𝐶  =  𝑋  ∧  ( 𝐷  ∈  On  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) ) )  ↔  ( 𝐶  =  𝑋  ∧  ( 𝐷  =  𝑌  ∧  𝐸  =  𝑍 ) ) ) ) | 
						
							| 211 | 169 210 | bitrd | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  →  ( ( ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) )  ↔  ( 𝐶  =  𝑋  ∧  ( 𝐷  =  𝑌  ∧  𝐸  =  𝑍 ) ) ) ) | 
						
							| 212 |  | 3an4anass | ⊢ ( ( ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o )  ∧  𝐸  ∈  ( 𝐴  ↑o  𝐶 ) )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 )  ↔  ( ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o ) )  ∧  ( 𝐸  ∈  ( 𝐴  ↑o  𝐶 )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 ) ) ) | 
						
							| 213 |  | 3anass | ⊢ ( ( 𝐶  =  𝑋  ∧  𝐷  =  𝑌  ∧  𝐸  =  𝑍 )  ↔  ( 𝐶  =  𝑋  ∧  ( 𝐷  =  𝑌  ∧  𝐸  =  𝑍 ) ) ) | 
						
							| 214 | 211 212 213 | 3bitr4g | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  ( On  ∖  1o ) )  →  ( ( ( 𝐶  ∈  On  ∧  𝐷  ∈  ( 𝐴  ∖  1o )  ∧  𝐸  ∈  ( 𝐴  ↑o  𝐶 ) )  ∧  ( ( ( 𝐴  ↑o  𝐶 )  ·o  𝐷 )  +o  𝐸 )  =  𝐵 )  ↔  ( 𝐶  =  𝑋  ∧  𝐷  =  𝑌  ∧  𝐸  =  𝑍 ) ) ) |