Step |
Hyp |
Ref |
Expression |
1 |
|
oeeu.1 |
⊢ 𝑋 = ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } |
2 |
|
eldifi |
⊢ ( 𝐵 ∈ ( On ∖ 1o ) → 𝐵 ∈ On ) |
3 |
2
|
adantl |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝐵 ∈ On ) |
4 |
|
suceloni |
⊢ ( 𝐵 ∈ On → suc 𝐵 ∈ On ) |
5 |
3 4
|
syl |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → suc 𝐵 ∈ On ) |
6 |
|
oeworde |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ suc 𝐵 ∈ On ) → suc 𝐵 ⊆ ( 𝐴 ↑o suc 𝐵 ) ) |
7 |
5 6
|
syldan |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → suc 𝐵 ⊆ ( 𝐴 ↑o suc 𝐵 ) ) |
8 |
|
sucidg |
⊢ ( 𝐵 ∈ On → 𝐵 ∈ suc 𝐵 ) |
9 |
3 8
|
syl |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝐵 ∈ suc 𝐵 ) |
10 |
7 9
|
sseldd |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝐵 ∈ ( 𝐴 ↑o suc 𝐵 ) ) |
11 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝐵 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o suc 𝐵 ) ) |
12 |
11
|
eleq2d |
⊢ ( 𝑥 = suc 𝐵 → ( 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) ↔ 𝐵 ∈ ( 𝐴 ↑o suc 𝐵 ) ) ) |
13 |
12
|
rspcev |
⊢ ( ( suc 𝐵 ∈ On ∧ 𝐵 ∈ ( 𝐴 ↑o suc 𝐵 ) ) → ∃ 𝑥 ∈ On 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) ) |
14 |
5 10 13
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ∃ 𝑥 ∈ On 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) ) |
15 |
|
onintrab2 |
⊢ ( ∃ 𝑥 ∈ On 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) ↔ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ∈ On ) |
16 |
14 15
|
sylib |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ∈ On ) |
17 |
|
onuni |
⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ∈ On → ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ∈ On ) |
18 |
16 17
|
syl |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ∈ On ) |
19 |
1 18
|
eqeltrid |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝑋 ∈ On ) |
20 |
|
sucidg |
⊢ ( 𝑋 ∈ On → 𝑋 ∈ suc 𝑋 ) |
21 |
19 20
|
syl |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝑋 ∈ suc 𝑋 ) |
22 |
|
suceq |
⊢ ( 𝑋 = ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } → suc 𝑋 = suc ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) |
23 |
1 22
|
ax-mp |
⊢ suc 𝑋 = suc ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } |
24 |
|
dif1o |
⊢ ( 𝐵 ∈ ( On ∖ 1o ) ↔ ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) ) |
25 |
24
|
simprbi |
⊢ ( 𝐵 ∈ ( On ∖ 1o ) → 𝐵 ≠ ∅ ) |
26 |
25
|
adantl |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝐵 ≠ ∅ ) |
27 |
|
ssrab2 |
⊢ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ⊆ On |
28 |
|
rabn0 |
⊢ ( { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ≠ ∅ ↔ ∃ 𝑥 ∈ On 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) ) |
29 |
14 28
|
sylibr |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ≠ ∅ ) |
30 |
|
onint |
⊢ ( ( { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ⊆ On ∧ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ≠ ∅ ) → ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) |
31 |
27 29 30
|
sylancr |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) |
32 |
|
eleq1 |
⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∅ → ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ↔ ∅ ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) ) |
33 |
31 32
|
syl5ibcom |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∅ → ∅ ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) ) |
34 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o ∅ ) ) |
35 |
34
|
eleq2d |
⊢ ( 𝑥 = ∅ → ( 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) ↔ 𝐵 ∈ ( 𝐴 ↑o ∅ ) ) ) |
36 |
35
|
elrab |
⊢ ( ∅ ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ↔ ( ∅ ∈ On ∧ 𝐵 ∈ ( 𝐴 ↑o ∅ ) ) ) |
37 |
36
|
simprbi |
⊢ ( ∅ ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } → 𝐵 ∈ ( 𝐴 ↑o ∅ ) ) |
38 |
|
eldifi |
⊢ ( 𝐴 ∈ ( On ∖ 2o ) → 𝐴 ∈ On ) |
39 |
38
|
adantr |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝐴 ∈ On ) |
40 |
|
oe0 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o ∅ ) = 1o ) |
41 |
39 40
|
syl |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( 𝐴 ↑o ∅ ) = 1o ) |
42 |
41
|
eleq2d |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( 𝐵 ∈ ( 𝐴 ↑o ∅ ) ↔ 𝐵 ∈ 1o ) ) |
43 |
|
el1o |
⊢ ( 𝐵 ∈ 1o ↔ 𝐵 = ∅ ) |
44 |
42 43
|
bitrdi |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( 𝐵 ∈ ( 𝐴 ↑o ∅ ) ↔ 𝐵 = ∅ ) ) |
45 |
37 44
|
syl5ib |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ∅ ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } → 𝐵 = ∅ ) ) |
46 |
33 45
|
syld |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∅ → 𝐵 = ∅ ) ) |
47 |
46
|
necon3ad |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( 𝐵 ≠ ∅ → ¬ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∅ ) ) |
48 |
26 47
|
mpd |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ¬ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∅ ) |
49 |
|
limuni |
⊢ ( Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } → ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) |
50 |
49 1
|
eqtr4di |
⊢ ( Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } → ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = 𝑋 ) |
51 |
50
|
adantl |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = 𝑋 ) |
52 |
31
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) |
53 |
51 52
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → 𝑋 ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) |
54 |
|
oveq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝐴 ↑o 𝑦 ) = ( 𝐴 ↑o 𝑋 ) ) |
55 |
54
|
eleq2d |
⊢ ( 𝑦 = 𝑋 → ( 𝐵 ∈ ( 𝐴 ↑o 𝑦 ) ↔ 𝐵 ∈ ( 𝐴 ↑o 𝑋 ) ) ) |
56 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝑦 ) ) |
57 |
56
|
eleq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) ↔ 𝐵 ∈ ( 𝐴 ↑o 𝑦 ) ) ) |
58 |
57
|
cbvrabv |
⊢ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = { 𝑦 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑦 ) } |
59 |
55 58
|
elrab2 |
⊢ ( 𝑋 ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ↔ ( 𝑋 ∈ On ∧ 𝐵 ∈ ( 𝐴 ↑o 𝑋 ) ) ) |
60 |
59
|
simprbi |
⊢ ( 𝑋 ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } → 𝐵 ∈ ( 𝐴 ↑o 𝑋 ) ) |
61 |
53 60
|
syl |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → 𝐵 ∈ ( 𝐴 ↑o 𝑋 ) ) |
62 |
38
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → 𝐴 ∈ On ) |
63 |
|
limeq |
⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = 𝑋 → ( Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ↔ Lim 𝑋 ) ) |
64 |
50 63
|
syl |
⊢ ( Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } → ( Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ↔ Lim 𝑋 ) ) |
65 |
64
|
ibi |
⊢ ( Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } → Lim 𝑋 ) |
66 |
19 65
|
anim12i |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → ( 𝑋 ∈ On ∧ Lim 𝑋 ) ) |
67 |
|
dif20el |
⊢ ( 𝐴 ∈ ( On ∖ 2o ) → ∅ ∈ 𝐴 ) |
68 |
67
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → ∅ ∈ 𝐴 ) |
69 |
|
oelim |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑋 ∈ On ∧ Lim 𝑋 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑋 ) = ∪ 𝑦 ∈ 𝑋 ( 𝐴 ↑o 𝑦 ) ) |
70 |
62 66 68 69
|
syl21anc |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → ( 𝐴 ↑o 𝑋 ) = ∪ 𝑦 ∈ 𝑋 ( 𝐴 ↑o 𝑦 ) ) |
71 |
61 70
|
eleqtrd |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → 𝐵 ∈ ∪ 𝑦 ∈ 𝑋 ( 𝐴 ↑o 𝑦 ) ) |
72 |
|
eliun |
⊢ ( 𝐵 ∈ ∪ 𝑦 ∈ 𝑋 ( 𝐴 ↑o 𝑦 ) ↔ ∃ 𝑦 ∈ 𝑋 𝐵 ∈ ( 𝐴 ↑o 𝑦 ) ) |
73 |
71 72
|
sylib |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → ∃ 𝑦 ∈ 𝑋 𝐵 ∈ ( 𝐴 ↑o 𝑦 ) ) |
74 |
19
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → 𝑋 ∈ On ) |
75 |
|
onss |
⊢ ( 𝑋 ∈ On → 𝑋 ⊆ On ) |
76 |
74 75
|
syl |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → 𝑋 ⊆ On ) |
77 |
76
|
sselda |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ On ) |
78 |
51
|
eleq2d |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → ( 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ↔ 𝑦 ∈ 𝑋 ) ) |
79 |
78
|
biimpar |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) |
80 |
57
|
onnminsb |
⊢ ( 𝑦 ∈ On → ( 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } → ¬ 𝐵 ∈ ( 𝐴 ↑o 𝑦 ) ) ) |
81 |
77 79 80
|
sylc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) ∧ 𝑦 ∈ 𝑋 ) → ¬ 𝐵 ∈ ( 𝐴 ↑o 𝑦 ) ) |
82 |
81
|
nrexdv |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) → ¬ ∃ 𝑦 ∈ 𝑋 𝐵 ∈ ( 𝐴 ↑o 𝑦 ) ) |
83 |
73 82
|
pm2.65da |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ¬ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) |
84 |
|
ioran |
⊢ ( ¬ ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∅ ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) ↔ ( ¬ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∅ ∧ ¬ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) ) |
85 |
48 83 84
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ¬ ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∅ ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) ) |
86 |
|
eloni |
⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ∈ On → Ord ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) |
87 |
|
unizlim |
⊢ ( Ord ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } → ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ↔ ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∅ ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) ) ) |
88 |
16 86 87
|
3syl |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ↔ ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∅ ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) ) ) |
89 |
85 88
|
mtbird |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ¬ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) |
90 |
|
orduniorsuc |
⊢ ( Ord ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } → ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ∨ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = suc ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) ) |
91 |
16 86 90
|
3syl |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ∨ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = suc ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) ) |
92 |
91
|
ord |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ¬ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } → ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = suc ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) ) |
93 |
89 92
|
mpd |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = suc ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) |
94 |
23 93
|
eqtr4id |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → suc 𝑋 = ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) |
95 |
21 94
|
eleqtrd |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝑋 ∈ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) |
96 |
58
|
inteqi |
⊢ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } = ∩ { 𝑦 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑦 ) } |
97 |
95 96
|
eleqtrdi |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝑋 ∈ ∩ { 𝑦 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑦 ) } ) |
98 |
55
|
onnminsb |
⊢ ( 𝑋 ∈ On → ( 𝑋 ∈ ∩ { 𝑦 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑦 ) } → ¬ 𝐵 ∈ ( 𝐴 ↑o 𝑋 ) ) ) |
99 |
19 97 98
|
sylc |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ¬ 𝐵 ∈ ( 𝐴 ↑o 𝑋 ) ) |
100 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑋 ∈ On ) → ( 𝐴 ↑o 𝑋 ) ∈ On ) |
101 |
39 19 100
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( 𝐴 ↑o 𝑋 ) ∈ On ) |
102 |
|
ontri1 |
⊢ ( ( ( 𝐴 ↑o 𝑋 ) ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ↑o 𝑋 ) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ( 𝐴 ↑o 𝑋 ) ) ) |
103 |
101 3 102
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ( 𝐴 ↑o 𝑋 ) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ( 𝐴 ↑o 𝑋 ) ) ) |
104 |
99 103
|
mpbird |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( 𝐴 ↑o 𝑋 ) ⊆ 𝐵 ) |
105 |
94 31
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → suc 𝑋 ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ) |
106 |
|
oveq2 |
⊢ ( 𝑦 = suc 𝑋 → ( 𝐴 ↑o 𝑦 ) = ( 𝐴 ↑o suc 𝑋 ) ) |
107 |
106
|
eleq2d |
⊢ ( 𝑦 = suc 𝑋 → ( 𝐵 ∈ ( 𝐴 ↑o 𝑦 ) ↔ 𝐵 ∈ ( 𝐴 ↑o suc 𝑋 ) ) ) |
108 |
107 58
|
elrab2 |
⊢ ( suc 𝑋 ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } ↔ ( suc 𝑋 ∈ On ∧ 𝐵 ∈ ( 𝐴 ↑o suc 𝑋 ) ) ) |
109 |
108
|
simprbi |
⊢ ( suc 𝑋 ∈ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } → 𝐵 ∈ ( 𝐴 ↑o suc 𝑋 ) ) |
110 |
105 109
|
syl |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝐵 ∈ ( 𝐴 ↑o suc 𝑋 ) ) |
111 |
19 104 110
|
3jca |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( 𝑋 ∈ On ∧ ( 𝐴 ↑o 𝑋 ) ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 ↑o suc 𝑋 ) ) ) |