Step |
Hyp |
Ref |
Expression |
1 |
|
limelon |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → 𝐵 ∈ On ) |
2 |
|
simpr |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → Lim 𝐵 ) |
3 |
1 2
|
jca |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) |
4 |
|
rdglim2a |
⊢ ( ( 𝐵 ∈ On ∧ Lim 𝐵 ) → ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝑥 ) ) |
5 |
4
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝑥 ) ) |
6 |
|
oevn0 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝐵 ) = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ) |
7 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) |
8 |
|
oevn0 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑥 ) = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝑥 ) ) |
9 |
7 8
|
sylanl2 |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝑥 ∈ 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑥 ) = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝑥 ) ) |
10 |
9
|
exp42 |
⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝑥 ∈ 𝐵 → ( ∅ ∈ 𝐴 → ( 𝐴 ↑o 𝑥 ) = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝑥 ) ) ) ) ) |
11 |
10
|
com34 |
⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( ∅ ∈ 𝐴 → ( 𝑥 ∈ 𝐵 → ( 𝐴 ↑o 𝑥 ) = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝑥 ) ) ) ) ) |
12 |
11
|
imp41 |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 ↑o 𝑥 ) = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝑥 ) ) |
13 |
12
|
iuneq2dv |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ∪ 𝑥 ∈ 𝐵 ( 𝐴 ↑o 𝑥 ) = ∪ 𝑥 ∈ 𝐵 ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝑥 ) ) |
14 |
6 13
|
eqeq12d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ↑o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ↑o 𝑥 ) ↔ ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝑥 ) ) ) |
15 |
14
|
adantlrr |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ↑o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ↑o 𝑥 ) ↔ ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝑥 ) ) ) |
16 |
5 15
|
mpbird |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ↑o 𝑥 ) ) |
17 |
3 16
|
sylanl2 |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ↑o 𝑥 ) ) |