| Step | Hyp | Ref | Expression | 
						
							| 1 |  | limelon | ⊢ ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  →  𝐵  ∈  On ) | 
						
							| 2 |  | 0ellim | ⊢ ( Lim  𝐵  →  ∅  ∈  𝐵 ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  →  ∅  ∈  𝐵 ) | 
						
							| 4 |  | oe0m1 | ⊢ ( 𝐵  ∈  On  →  ( ∅  ∈  𝐵  ↔  ( ∅  ↑o  𝐵 )  =  ∅ ) ) | 
						
							| 5 | 4 | biimpa | ⊢ ( ( 𝐵  ∈  On  ∧  ∅  ∈  𝐵 )  →  ( ∅  ↑o  𝐵 )  =  ∅ ) | 
						
							| 6 | 1 3 5 | syl2anc | ⊢ ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  →  ( ∅  ↑o  𝐵 )  =  ∅ ) | 
						
							| 7 |  | eldif | ⊢ ( 𝑥  ∈  ( 𝐵  ∖  1o )  ↔  ( 𝑥  ∈  𝐵  ∧  ¬  𝑥  ∈  1o ) ) | 
						
							| 8 |  | limord | ⊢ ( Lim  𝐵  →  Ord  𝐵 ) | 
						
							| 9 |  | ordelon | ⊢ ( ( Ord  𝐵  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  On ) | 
						
							| 10 | 8 9 | sylan | ⊢ ( ( Lim  𝐵  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  On ) | 
						
							| 11 |  | on0eln0 | ⊢ ( 𝑥  ∈  On  →  ( ∅  ∈  𝑥  ↔  𝑥  ≠  ∅ ) ) | 
						
							| 12 |  | el1o | ⊢ ( 𝑥  ∈  1o  ↔  𝑥  =  ∅ ) | 
						
							| 13 | 12 | necon3bbii | ⊢ ( ¬  𝑥  ∈  1o  ↔  𝑥  ≠  ∅ ) | 
						
							| 14 | 11 13 | bitr4di | ⊢ ( 𝑥  ∈  On  →  ( ∅  ∈  𝑥  ↔  ¬  𝑥  ∈  1o ) ) | 
						
							| 15 |  | oe0m1 | ⊢ ( 𝑥  ∈  On  →  ( ∅  ∈  𝑥  ↔  ( ∅  ↑o  𝑥 )  =  ∅ ) ) | 
						
							| 16 | 15 | biimpd | ⊢ ( 𝑥  ∈  On  →  ( ∅  ∈  𝑥  →  ( ∅  ↑o  𝑥 )  =  ∅ ) ) | 
						
							| 17 | 14 16 | sylbird | ⊢ ( 𝑥  ∈  On  →  ( ¬  𝑥  ∈  1o  →  ( ∅  ↑o  𝑥 )  =  ∅ ) ) | 
						
							| 18 | 10 17 | syl | ⊢ ( ( Lim  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( ¬  𝑥  ∈  1o  →  ( ∅  ↑o  𝑥 )  =  ∅ ) ) | 
						
							| 19 | 18 | impr | ⊢ ( ( Lim  𝐵  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  𝑥  ∈  1o ) )  →  ( ∅  ↑o  𝑥 )  =  ∅ ) | 
						
							| 20 | 7 19 | sylan2b | ⊢ ( ( Lim  𝐵  ∧  𝑥  ∈  ( 𝐵  ∖  1o ) )  →  ( ∅  ↑o  𝑥 )  =  ∅ ) | 
						
							| 21 | 20 | iuneq2dv | ⊢ ( Lim  𝐵  →  ∪  𝑥  ∈  ( 𝐵  ∖  1o ) ( ∅  ↑o  𝑥 )  =  ∪  𝑥  ∈  ( 𝐵  ∖  1o ) ∅ ) | 
						
							| 22 |  | df-1o | ⊢ 1o  =  suc  ∅ | 
						
							| 23 |  | limsuc | ⊢ ( Lim  𝐵  →  ( ∅  ∈  𝐵  ↔  suc  ∅  ∈  𝐵 ) ) | 
						
							| 24 | 2 23 | mpbid | ⊢ ( Lim  𝐵  →  suc  ∅  ∈  𝐵 ) | 
						
							| 25 | 22 24 | eqeltrid | ⊢ ( Lim  𝐵  →  1o  ∈  𝐵 ) | 
						
							| 26 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 27 | 26 | onirri | ⊢ ¬  1o  ∈  1o | 
						
							| 28 |  | eldif | ⊢ ( 1o  ∈  ( 𝐵  ∖  1o )  ↔  ( 1o  ∈  𝐵  ∧  ¬  1o  ∈  1o ) ) | 
						
							| 29 | 25 27 28 | sylanblrc | ⊢ ( Lim  𝐵  →  1o  ∈  ( 𝐵  ∖  1o ) ) | 
						
							| 30 |  | ne0i | ⊢ ( 1o  ∈  ( 𝐵  ∖  1o )  →  ( 𝐵  ∖  1o )  ≠  ∅ ) | 
						
							| 31 |  | iunconst | ⊢ ( ( 𝐵  ∖  1o )  ≠  ∅  →  ∪  𝑥  ∈  ( 𝐵  ∖  1o ) ∅  =  ∅ ) | 
						
							| 32 | 29 30 31 | 3syl | ⊢ ( Lim  𝐵  →  ∪  𝑥  ∈  ( 𝐵  ∖  1o ) ∅  =  ∅ ) | 
						
							| 33 | 21 32 | eqtrd | ⊢ ( Lim  𝐵  →  ∪  𝑥  ∈  ( 𝐵  ∖  1o ) ( ∅  ↑o  𝑥 )  =  ∅ ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  →  ∪  𝑥  ∈  ( 𝐵  ∖  1o ) ( ∅  ↑o  𝑥 )  =  ∅ ) | 
						
							| 35 | 6 34 | eqtr4d | ⊢ ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  →  ( ∅  ↑o  𝐵 )  =  ∪  𝑥  ∈  ( 𝐵  ∖  1o ) ( ∅  ↑o  𝑥 ) ) | 
						
							| 36 |  | oveq1 | ⊢ ( 𝐴  =  ∅  →  ( 𝐴  ↑o  𝐵 )  =  ( ∅  ↑o  𝐵 ) ) | 
						
							| 37 |  | oveq1 | ⊢ ( 𝐴  =  ∅  →  ( 𝐴  ↑o  𝑥 )  =  ( ∅  ↑o  𝑥 ) ) | 
						
							| 38 | 37 | iuneq2d | ⊢ ( 𝐴  =  ∅  →  ∪  𝑥  ∈  ( 𝐵  ∖  1o ) ( 𝐴  ↑o  𝑥 )  =  ∪  𝑥  ∈  ( 𝐵  ∖  1o ) ( ∅  ↑o  𝑥 ) ) | 
						
							| 39 | 36 38 | eqeq12d | ⊢ ( 𝐴  =  ∅  →  ( ( 𝐴  ↑o  𝐵 )  =  ∪  𝑥  ∈  ( 𝐵  ∖  1o ) ( 𝐴  ↑o  𝑥 )  ↔  ( ∅  ↑o  𝐵 )  =  ∪  𝑥  ∈  ( 𝐵  ∖  1o ) ( ∅  ↑o  𝑥 ) ) ) | 
						
							| 40 | 35 39 | imbitrrid | ⊢ ( 𝐴  =  ∅  →  ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  →  ( 𝐴  ↑o  𝐵 )  =  ∪  𝑥  ∈  ( 𝐵  ∖  1o ) ( 𝐴  ↑o  𝑥 ) ) ) | 
						
							| 41 | 40 | impcom | ⊢ ( ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  ∧  𝐴  =  ∅ )  →  ( 𝐴  ↑o  𝐵 )  =  ∪  𝑥  ∈  ( 𝐵  ∖  1o ) ( 𝐴  ↑o  𝑥 ) ) | 
						
							| 42 |  | oelim | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ∅  ∈  𝐴 )  →  ( 𝐴  ↑o  𝐵 )  =  ∪  𝑦  ∈  𝐵 ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 43 |  | limsuc | ⊢ ( Lim  𝐵  →  ( 𝑦  ∈  𝐵  ↔  suc  𝑦  ∈  𝐵 ) ) | 
						
							| 44 | 43 | biimpa | ⊢ ( ( Lim  𝐵  ∧  𝑦  ∈  𝐵 )  →  suc  𝑦  ∈  𝐵 ) | 
						
							| 45 |  | nsuceq0 | ⊢ suc  𝑦  ≠  ∅ | 
						
							| 46 |  | dif1o | ⊢ ( suc  𝑦  ∈  ( 𝐵  ∖  1o )  ↔  ( suc  𝑦  ∈  𝐵  ∧  suc  𝑦  ≠  ∅ ) ) | 
						
							| 47 | 44 45 46 | sylanblrc | ⊢ ( ( Lim  𝐵  ∧  𝑦  ∈  𝐵 )  →  suc  𝑦  ∈  ( 𝐵  ∖  1o ) ) | 
						
							| 48 | 47 | ex | ⊢ ( Lim  𝐵  →  ( 𝑦  ∈  𝐵  →  suc  𝑦  ∈  ( 𝐵  ∖  1o ) ) ) | 
						
							| 49 | 48 | ad2antlr | ⊢ ( ( ( 𝐴  ∈  On  ∧  Lim  𝐵 )  ∧  ∅  ∈  𝐴 )  →  ( 𝑦  ∈  𝐵  →  suc  𝑦  ∈  ( 𝐵  ∖  1o ) ) ) | 
						
							| 50 |  | sssucid | ⊢ 𝑦  ⊆  suc  𝑦 | 
						
							| 51 |  | ordelon | ⊢ ( ( Ord  𝐵  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  On ) | 
						
							| 52 | 8 51 | sylan | ⊢ ( ( Lim  𝐵  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  On ) | 
						
							| 53 |  | onsuc | ⊢ ( 𝑦  ∈  On  →  suc  𝑦  ∈  On ) | 
						
							| 54 | 52 53 | jccir | ⊢ ( ( Lim  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑦  ∈  On  ∧  suc  𝑦  ∈  On ) ) | 
						
							| 55 |  | id | ⊢ ( ( 𝑦  ∈  On  ∧  suc  𝑦  ∈  On  ∧  𝐴  ∈  On )  →  ( 𝑦  ∈  On  ∧  suc  𝑦  ∈  On  ∧  𝐴  ∈  On ) ) | 
						
							| 56 | 55 | 3expa | ⊢ ( ( ( 𝑦  ∈  On  ∧  suc  𝑦  ∈  On )  ∧  𝐴  ∈  On )  →  ( 𝑦  ∈  On  ∧  suc  𝑦  ∈  On  ∧  𝐴  ∈  On ) ) | 
						
							| 57 | 56 | ancoms | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝑦  ∈  On  ∧  suc  𝑦  ∈  On ) )  →  ( 𝑦  ∈  On  ∧  suc  𝑦  ∈  On  ∧  𝐴  ∈  On ) ) | 
						
							| 58 | 54 57 | sylan2 | ⊢ ( ( 𝐴  ∈  On  ∧  ( Lim  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑦  ∈  On  ∧  suc  𝑦  ∈  On  ∧  𝐴  ∈  On ) ) | 
						
							| 59 | 58 | anassrs | ⊢ ( ( ( 𝐴  ∈  On  ∧  Lim  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  ( 𝑦  ∈  On  ∧  suc  𝑦  ∈  On  ∧  𝐴  ∈  On ) ) | 
						
							| 60 |  | oewordi | ⊢ ( ( ( 𝑦  ∈  On  ∧  suc  𝑦  ∈  On  ∧  𝐴  ∈  On )  ∧  ∅  ∈  𝐴 )  →  ( 𝑦  ⊆  suc  𝑦  →  ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐴  ↑o  suc  𝑦 ) ) ) | 
						
							| 61 | 59 60 | sylan | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  Lim  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  ∅  ∈  𝐴 )  →  ( 𝑦  ⊆  suc  𝑦  →  ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐴  ↑o  suc  𝑦 ) ) ) | 
						
							| 62 | 61 | an32s | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  Lim  𝐵 )  ∧  ∅  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  →  ( 𝑦  ⊆  suc  𝑦  →  ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐴  ↑o  suc  𝑦 ) ) ) | 
						
							| 63 | 50 62 | mpi | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  Lim  𝐵 )  ∧  ∅  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  →  ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐴  ↑o  suc  𝑦 ) ) | 
						
							| 64 | 63 | ex | ⊢ ( ( ( 𝐴  ∈  On  ∧  Lim  𝐵 )  ∧  ∅  ∈  𝐴 )  →  ( 𝑦  ∈  𝐵  →  ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐴  ↑o  suc  𝑦 ) ) ) | 
						
							| 65 | 49 64 | jcad | ⊢ ( ( ( 𝐴  ∈  On  ∧  Lim  𝐵 )  ∧  ∅  ∈  𝐴 )  →  ( 𝑦  ∈  𝐵  →  ( suc  𝑦  ∈  ( 𝐵  ∖  1o )  ∧  ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐴  ↑o  suc  𝑦 ) ) ) ) | 
						
							| 66 |  | oveq2 | ⊢ ( 𝑥  =  suc  𝑦  →  ( 𝐴  ↑o  𝑥 )  =  ( 𝐴  ↑o  suc  𝑦 ) ) | 
						
							| 67 | 66 | sseq2d | ⊢ ( 𝑥  =  suc  𝑦  →  ( ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐴  ↑o  𝑥 )  ↔  ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐴  ↑o  suc  𝑦 ) ) ) | 
						
							| 68 | 67 | rspcev | ⊢ ( ( suc  𝑦  ∈  ( 𝐵  ∖  1o )  ∧  ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐴  ↑o  suc  𝑦 ) )  →  ∃ 𝑥  ∈  ( 𝐵  ∖  1o ) ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐴  ↑o  𝑥 ) ) | 
						
							| 69 | 65 68 | syl6 | ⊢ ( ( ( 𝐴  ∈  On  ∧  Lim  𝐵 )  ∧  ∅  ∈  𝐴 )  →  ( 𝑦  ∈  𝐵  →  ∃ 𝑥  ∈  ( 𝐵  ∖  1o ) ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐴  ↑o  𝑥 ) ) ) | 
						
							| 70 | 69 | ralrimiv | ⊢ ( ( ( 𝐴  ∈  On  ∧  Lim  𝐵 )  ∧  ∅  ∈  𝐴 )  →  ∀ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  ( 𝐵  ∖  1o ) ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐴  ↑o  𝑥 ) ) | 
						
							| 71 |  | iunss2 | ⊢ ( ∀ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  ( 𝐵  ∖  1o ) ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐴  ↑o  𝑥 )  →  ∪  𝑦  ∈  𝐵 ( 𝐴  ↑o  𝑦 )  ⊆  ∪  𝑥  ∈  ( 𝐵  ∖  1o ) ( 𝐴  ↑o  𝑥 ) ) | 
						
							| 72 | 70 71 | syl | ⊢ ( ( ( 𝐴  ∈  On  ∧  Lim  𝐵 )  ∧  ∅  ∈  𝐴 )  →  ∪  𝑦  ∈  𝐵 ( 𝐴  ↑o  𝑦 )  ⊆  ∪  𝑥  ∈  ( 𝐵  ∖  1o ) ( 𝐴  ↑o  𝑥 ) ) | 
						
							| 73 |  | difss | ⊢ ( 𝐵  ∖  1o )  ⊆  𝐵 | 
						
							| 74 |  | iunss1 | ⊢ ( ( 𝐵  ∖  1o )  ⊆  𝐵  →  ∪  𝑥  ∈  ( 𝐵  ∖  1o ) ( 𝐴  ↑o  𝑥 )  ⊆  ∪  𝑥  ∈  𝐵 ( 𝐴  ↑o  𝑥 ) ) | 
						
							| 75 | 73 74 | ax-mp | ⊢ ∪  𝑥  ∈  ( 𝐵  ∖  1o ) ( 𝐴  ↑o  𝑥 )  ⊆  ∪  𝑥  ∈  𝐵 ( 𝐴  ↑o  𝑥 ) | 
						
							| 76 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  ↑o  𝑥 )  =  ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 77 | 76 | cbviunv | ⊢ ∪  𝑥  ∈  𝐵 ( 𝐴  ↑o  𝑥 )  =  ∪  𝑦  ∈  𝐵 ( 𝐴  ↑o  𝑦 ) | 
						
							| 78 | 75 77 | sseqtri | ⊢ ∪  𝑥  ∈  ( 𝐵  ∖  1o ) ( 𝐴  ↑o  𝑥 )  ⊆  ∪  𝑦  ∈  𝐵 ( 𝐴  ↑o  𝑦 ) | 
						
							| 79 | 78 | a1i | ⊢ ( ( ( 𝐴  ∈  On  ∧  Lim  𝐵 )  ∧  ∅  ∈  𝐴 )  →  ∪  𝑥  ∈  ( 𝐵  ∖  1o ) ( 𝐴  ↑o  𝑥 )  ⊆  ∪  𝑦  ∈  𝐵 ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 80 | 72 79 | eqssd | ⊢ ( ( ( 𝐴  ∈  On  ∧  Lim  𝐵 )  ∧  ∅  ∈  𝐴 )  →  ∪  𝑦  ∈  𝐵 ( 𝐴  ↑o  𝑦 )  =  ∪  𝑥  ∈  ( 𝐵  ∖  1o ) ( 𝐴  ↑o  𝑥 ) ) | 
						
							| 81 | 80 | adantlrl | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ∅  ∈  𝐴 )  →  ∪  𝑦  ∈  𝐵 ( 𝐴  ↑o  𝑦 )  =  ∪  𝑥  ∈  ( 𝐵  ∖  1o ) ( 𝐴  ↑o  𝑥 ) ) | 
						
							| 82 | 42 81 | eqtrd | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ∅  ∈  𝐴 )  →  ( 𝐴  ↑o  𝐵 )  =  ∪  𝑥  ∈  ( 𝐵  ∖  1o ) ( 𝐴  ↑o  𝑥 ) ) | 
						
							| 83 | 41 82 | oe0lem | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  ( 𝐴  ↑o  𝐵 )  =  ∪  𝑥  ∈  ( 𝐵  ∖  1o ) ( 𝐴  ↑o  𝑥 ) ) |