| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifi | ⊢ ( 𝐴  ∈  ( On  ∖  2o )  →  𝐴  ∈  On ) | 
						
							| 2 |  | limelon | ⊢ ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  →  𝐵  ∈  On ) | 
						
							| 3 |  | oecl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ↑o  𝐵 )  ∈  On ) | 
						
							| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  ( 𝐴  ↑o  𝐵 )  ∈  On ) | 
						
							| 5 |  | eloni | ⊢ ( ( 𝐴  ↑o  𝐵 )  ∈  On  →  Ord  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  Ord  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 7 | 1 | adantr | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  𝐴  ∈  On ) | 
						
							| 8 | 2 | adantl | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  𝐵  ∈  On ) | 
						
							| 9 |  | dif20el | ⊢ ( 𝐴  ∈  ( On  ∖  2o )  →  ∅  ∈  𝐴 ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  ∅  ∈  𝐴 ) | 
						
							| 11 |  | oen0 | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ∅  ∈  𝐴 )  →  ∅  ∈  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 12 | 7 8 10 11 | syl21anc | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  ∅  ∈  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 13 |  | oelim2 | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  ( 𝐴  ↑o  𝐵 )  =  ∪  𝑦  ∈  ( 𝐵  ∖  1o ) ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 14 | 1 13 | sylan | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  ( 𝐴  ↑o  𝐵 )  =  ∪  𝑦  ∈  ( 𝐵  ∖  1o ) ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 15 | 14 | eleq2d | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  ( 𝑥  ∈  ( 𝐴  ↑o  𝐵 )  ↔  𝑥  ∈  ∪  𝑦  ∈  ( 𝐵  ∖  1o ) ( 𝐴  ↑o  𝑦 ) ) ) | 
						
							| 16 |  | eliun | ⊢ ( 𝑥  ∈  ∪  𝑦  ∈  ( 𝐵  ∖  1o ) ( 𝐴  ↑o  𝑦 )  ↔  ∃ 𝑦  ∈  ( 𝐵  ∖  1o ) 𝑥  ∈  ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 17 |  | eldifi | ⊢ ( 𝑦  ∈  ( 𝐵  ∖  1o )  →  𝑦  ∈  𝐵 ) | 
						
							| 18 | 7 | adantr | ⊢ ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑥  ∈  ( 𝐴  ↑o  𝑦 ) ) )  →  𝐴  ∈  On ) | 
						
							| 19 | 8 | adantr | ⊢ ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑥  ∈  ( 𝐴  ↑o  𝑦 ) ) )  →  𝐵  ∈  On ) | 
						
							| 20 |  | simprl | ⊢ ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑥  ∈  ( 𝐴  ↑o  𝑦 ) ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 21 |  | onelon | ⊢ ( ( 𝐵  ∈  On  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  On ) | 
						
							| 22 | 19 20 21 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑥  ∈  ( 𝐴  ↑o  𝑦 ) ) )  →  𝑦  ∈  On ) | 
						
							| 23 |  | oecl | ⊢ ( ( 𝐴  ∈  On  ∧  𝑦  ∈  On )  →  ( 𝐴  ↑o  𝑦 )  ∈  On ) | 
						
							| 24 | 18 22 23 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑥  ∈  ( 𝐴  ↑o  𝑦 ) ) )  →  ( 𝐴  ↑o  𝑦 )  ∈  On ) | 
						
							| 25 |  | eloni | ⊢ ( ( 𝐴  ↑o  𝑦 )  ∈  On  →  Ord  ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 26 | 24 25 | syl | ⊢ ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑥  ∈  ( 𝐴  ↑o  𝑦 ) ) )  →  Ord  ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 27 |  | simprr | ⊢ ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑥  ∈  ( 𝐴  ↑o  𝑦 ) ) )  →  𝑥  ∈  ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 28 |  | ordsucss | ⊢ ( Ord  ( 𝐴  ↑o  𝑦 )  →  ( 𝑥  ∈  ( 𝐴  ↑o  𝑦 )  →  suc  𝑥  ⊆  ( 𝐴  ↑o  𝑦 ) ) ) | 
						
							| 29 | 26 27 28 | sylc | ⊢ ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑥  ∈  ( 𝐴  ↑o  𝑦 ) ) )  →  suc  𝑥  ⊆  ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 30 |  | simpll | ⊢ ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑥  ∈  ( 𝐴  ↑o  𝑦 ) ) )  →  𝐴  ∈  ( On  ∖  2o ) ) | 
						
							| 31 |  | oeordi | ⊢ ( ( 𝐵  ∈  On  ∧  𝐴  ∈  ( On  ∖  2o ) )  →  ( 𝑦  ∈  𝐵  →  ( 𝐴  ↑o  𝑦 )  ∈  ( 𝐴  ↑o  𝐵 ) ) ) | 
						
							| 32 | 19 30 31 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑥  ∈  ( 𝐴  ↑o  𝑦 ) ) )  →  ( 𝑦  ∈  𝐵  →  ( 𝐴  ↑o  𝑦 )  ∈  ( 𝐴  ↑o  𝐵 ) ) ) | 
						
							| 33 | 20 32 | mpd | ⊢ ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑥  ∈  ( 𝐴  ↑o  𝑦 ) ) )  →  ( 𝐴  ↑o  𝑦 )  ∈  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 34 |  | onelon | ⊢ ( ( ( 𝐴  ↑o  𝑦 )  ∈  On  ∧  𝑥  ∈  ( 𝐴  ↑o  𝑦 ) )  →  𝑥  ∈  On ) | 
						
							| 35 | 24 27 34 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑥  ∈  ( 𝐴  ↑o  𝑦 ) ) )  →  𝑥  ∈  On ) | 
						
							| 36 |  | onsuc | ⊢ ( 𝑥  ∈  On  →  suc  𝑥  ∈  On ) | 
						
							| 37 | 35 36 | syl | ⊢ ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑥  ∈  ( 𝐴  ↑o  𝑦 ) ) )  →  suc  𝑥  ∈  On ) | 
						
							| 38 | 4 | adantr | ⊢ ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑥  ∈  ( 𝐴  ↑o  𝑦 ) ) )  →  ( 𝐴  ↑o  𝐵 )  ∈  On ) | 
						
							| 39 |  | ontr2 | ⊢ ( ( suc  𝑥  ∈  On  ∧  ( 𝐴  ↑o  𝐵 )  ∈  On )  →  ( ( suc  𝑥  ⊆  ( 𝐴  ↑o  𝑦 )  ∧  ( 𝐴  ↑o  𝑦 )  ∈  ( 𝐴  ↑o  𝐵 ) )  →  suc  𝑥  ∈  ( 𝐴  ↑o  𝐵 ) ) ) | 
						
							| 40 | 37 38 39 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑥  ∈  ( 𝐴  ↑o  𝑦 ) ) )  →  ( ( suc  𝑥  ⊆  ( 𝐴  ↑o  𝑦 )  ∧  ( 𝐴  ↑o  𝑦 )  ∈  ( 𝐴  ↑o  𝐵 ) )  →  suc  𝑥  ∈  ( 𝐴  ↑o  𝐵 ) ) ) | 
						
							| 41 | 29 33 40 | mp2and | ⊢ ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑥  ∈  ( 𝐴  ↑o  𝑦 ) ) )  →  suc  𝑥  ∈  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 42 | 41 | expr | ⊢ ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  ∈  ( 𝐴  ↑o  𝑦 )  →  suc  𝑥  ∈  ( 𝐴  ↑o  𝐵 ) ) ) | 
						
							| 43 | 17 42 | sylan2 | ⊢ ( ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  𝑦  ∈  ( 𝐵  ∖  1o ) )  →  ( 𝑥  ∈  ( 𝐴  ↑o  𝑦 )  →  suc  𝑥  ∈  ( 𝐴  ↑o  𝐵 ) ) ) | 
						
							| 44 | 43 | rexlimdva | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  ( ∃ 𝑦  ∈  ( 𝐵  ∖  1o ) 𝑥  ∈  ( 𝐴  ↑o  𝑦 )  →  suc  𝑥  ∈  ( 𝐴  ↑o  𝐵 ) ) ) | 
						
							| 45 | 16 44 | biimtrid | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  ( 𝑥  ∈  ∪  𝑦  ∈  ( 𝐵  ∖  1o ) ( 𝐴  ↑o  𝑦 )  →  suc  𝑥  ∈  ( 𝐴  ↑o  𝐵 ) ) ) | 
						
							| 46 | 15 45 | sylbid | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  ( 𝑥  ∈  ( 𝐴  ↑o  𝐵 )  →  suc  𝑥  ∈  ( 𝐴  ↑o  𝐵 ) ) ) | 
						
							| 47 | 46 | ralrimiv | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  ∀ 𝑥  ∈  ( 𝐴  ↑o  𝐵 ) suc  𝑥  ∈  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 48 |  | dflim4 | ⊢ ( Lim  ( 𝐴  ↑o  𝐵 )  ↔  ( Ord  ( 𝐴  ↑o  𝐵 )  ∧  ∅  ∈  ( 𝐴  ↑o  𝐵 )  ∧  ∀ 𝑥  ∈  ( 𝐴  ↑o  𝐵 ) suc  𝑥  ∈  ( 𝐴  ↑o  𝐵 ) ) ) | 
						
							| 49 | 6 12 47 48 | syl3anbrc | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  Lim  ( 𝐴  ↑o  𝐵 ) ) |