Step |
Hyp |
Ref |
Expression |
1 |
|
eldifi |
⊢ ( 𝐴 ∈ ( On ∖ 2o ) → 𝐴 ∈ On ) |
2 |
|
limelon |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → 𝐵 ∈ On ) |
3 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
5 |
|
eloni |
⊢ ( ( 𝐴 ↑o 𝐵 ) ∈ On → Ord ( 𝐴 ↑o 𝐵 ) ) |
6 |
4 5
|
syl |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → Ord ( 𝐴 ↑o 𝐵 ) ) |
7 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → 𝐴 ∈ On ) |
8 |
2
|
adantl |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → 𝐵 ∈ On ) |
9 |
|
dif20el |
⊢ ( 𝐴 ∈ ( On ∖ 2o ) → ∅ ∈ 𝐴 ) |
10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ∅ ∈ 𝐴 ) |
11 |
|
oen0 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ↑o 𝐵 ) ) |
12 |
7 8 10 11
|
syl21anc |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ∅ ∈ ( 𝐴 ↑o 𝐵 ) ) |
13 |
|
oelim2 |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝐴 ↑o 𝐵 ) = ∪ 𝑦 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑦 ) ) |
14 |
1 13
|
sylan |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝐴 ↑o 𝐵 ) = ∪ 𝑦 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑦 ) ) |
15 |
14
|
eleq2d |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ↔ 𝑥 ∈ ∪ 𝑦 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑦 ) ) ) |
16 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑦 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑦 ) ↔ ∃ 𝑦 ∈ ( 𝐵 ∖ 1o ) 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) |
17 |
|
eldifi |
⊢ ( 𝑦 ∈ ( 𝐵 ∖ 1o ) → 𝑦 ∈ 𝐵 ) |
18 |
7
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → 𝐴 ∈ On ) |
19 |
8
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → 𝐵 ∈ On ) |
20 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → 𝑦 ∈ 𝐵 ) |
21 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ On ) |
22 |
19 20 21
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → 𝑦 ∈ On ) |
23 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o 𝑦 ) ∈ On ) |
24 |
18 22 23
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → ( 𝐴 ↑o 𝑦 ) ∈ On ) |
25 |
|
eloni |
⊢ ( ( 𝐴 ↑o 𝑦 ) ∈ On → Ord ( 𝐴 ↑o 𝑦 ) ) |
26 |
24 25
|
syl |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → Ord ( 𝐴 ↑o 𝑦 ) ) |
27 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) |
28 |
|
ordsucss |
⊢ ( Ord ( 𝐴 ↑o 𝑦 ) → ( 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) → suc 𝑥 ⊆ ( 𝐴 ↑o 𝑦 ) ) ) |
29 |
26 27 28
|
sylc |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → suc 𝑥 ⊆ ( 𝐴 ↑o 𝑦 ) ) |
30 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → 𝐴 ∈ ( On ∖ 2o ) ) |
31 |
|
oeordi |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) → ( 𝑦 ∈ 𝐵 → ( 𝐴 ↑o 𝑦 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
32 |
19 30 31
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → ( 𝑦 ∈ 𝐵 → ( 𝐴 ↑o 𝑦 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
33 |
20 32
|
mpd |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → ( 𝐴 ↑o 𝑦 ) ∈ ( 𝐴 ↑o 𝐵 ) ) |
34 |
|
onelon |
⊢ ( ( ( 𝐴 ↑o 𝑦 ) ∈ On ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) → 𝑥 ∈ On ) |
35 |
24 27 34
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → 𝑥 ∈ On ) |
36 |
|
suceloni |
⊢ ( 𝑥 ∈ On → suc 𝑥 ∈ On ) |
37 |
35 36
|
syl |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → suc 𝑥 ∈ On ) |
38 |
4
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
39 |
|
ontr2 |
⊢ ( ( suc 𝑥 ∈ On ∧ ( 𝐴 ↑o 𝐵 ) ∈ On ) → ( ( suc 𝑥 ⊆ ( 𝐴 ↑o 𝑦 ) ∧ ( 𝐴 ↑o 𝑦 ) ∈ ( 𝐴 ↑o 𝐵 ) ) → suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
40 |
37 38 39
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → ( ( suc 𝑥 ⊆ ( 𝐴 ↑o 𝑦 ) ∧ ( 𝐴 ↑o 𝑦 ) ∈ ( 𝐴 ↑o 𝐵 ) ) → suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
41 |
29 33 40
|
mp2and |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) |
42 |
41
|
expr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) → suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
43 |
17 42
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ 𝑦 ∈ ( 𝐵 ∖ 1o ) ) → ( 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) → suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
44 |
43
|
rexlimdva |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( ∃ 𝑦 ∈ ( 𝐵 ∖ 1o ) 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) → suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
45 |
16 44
|
syl5bi |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝑥 ∈ ∪ 𝑦 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑦 ) → suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
46 |
15 45
|
sylbid |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) → suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
47 |
46
|
ralrimiv |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ∀ 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) |
48 |
|
dflim4 |
⊢ ( Lim ( 𝐴 ↑o 𝐵 ) ↔ ( Ord ( 𝐴 ↑o 𝐵 ) ∧ ∅ ∈ ( 𝐴 ↑o 𝐵 ) ∧ ∀ 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
49 |
6 12 47 48
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → Lim ( 𝐴 ↑o 𝐵 ) ) |