Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) |
2 |
|
cantnfs.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
3 |
|
cantnfs.b |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
4 |
|
oemapval.t |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } |
5 |
|
oemapval.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
6 |
|
oemapval.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) |
7 |
|
fveq1 |
⊢ ( 𝑥 = 𝐹 → ( 𝑥 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
8 |
|
fveq1 |
⊢ ( 𝑦 = 𝐺 → ( 𝑦 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
9 |
|
eleq12 |
⊢ ( ( ( 𝑥 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ∧ ( 𝑦 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) → ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ) ) |
10 |
7 8 9
|
syl2an |
⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ) ) |
11 |
|
fveq1 |
⊢ ( 𝑥 = 𝐹 → ( 𝑥 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑤 ) ) |
12 |
|
fveq1 |
⊢ ( 𝑦 = 𝐺 → ( 𝑦 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) |
13 |
11 12
|
eqeqan12d |
⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
14 |
13
|
imbi2d |
⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
15 |
14
|
ralbidv |
⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
16 |
10 15
|
anbi12d |
⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) |
17 |
16
|
rexbidv |
⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) |
18 |
17 4
|
brabga |
⊢ ( ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) → ( 𝐹 𝑇 𝐺 ↔ ∃ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) |
19 |
5 6 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 𝑇 𝐺 ↔ ∃ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) |