| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s | ⊢ 𝑆  =  dom  ( 𝐴  CNF  𝐵 ) | 
						
							| 2 |  | cantnfs.a | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 3 |  | cantnfs.b | ⊢ ( 𝜑  →  𝐵  ∈  On ) | 
						
							| 4 |  | oemapval.t | ⊢ 𝑇  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐵 ( ( 𝑥 ‘ 𝑧 )  ∈  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) } | 
						
							| 5 |  | oemapval.f | ⊢ ( 𝜑  →  𝐹  ∈  𝑆 ) | 
						
							| 6 |  | oemapval.g | ⊢ ( 𝜑  →  𝐺  ∈  𝑆 ) | 
						
							| 7 |  | oemapvali.r | ⊢ ( 𝜑  →  𝐹 𝑇 𝐺 ) | 
						
							| 8 |  | oemapvali.x | ⊢ 𝑋  =  ∪  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) } | 
						
							| 9 | 1 2 3 4 5 6 | oemapval | ⊢ ( 𝜑  →  ( 𝐹 𝑇 𝐺  ↔  ∃ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) ) | 
						
							| 10 | 7 9 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) | 
						
							| 11 |  | ssrab2 | ⊢ { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  ⊆  𝐵 | 
						
							| 12 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  𝐵  ∈  On ) | 
						
							| 13 |  | onss | ⊢ ( 𝐵  ∈  On  →  𝐵  ⊆  On ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  𝐵  ⊆  On ) | 
						
							| 15 | 11 14 | sstrid | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  ⊆  On ) | 
						
							| 16 | 1 2 3 | cantnfs | ⊢ ( 𝜑  →  ( 𝐺  ∈  𝑆  ↔  ( 𝐺 : 𝐵 ⟶ 𝐴  ∧  𝐺  finSupp  ∅ ) ) ) | 
						
							| 17 | 6 16 | mpbid | ⊢ ( 𝜑  →  ( 𝐺 : 𝐵 ⟶ 𝐴  ∧  𝐺  finSupp  ∅ ) ) | 
						
							| 18 | 17 | simprd | ⊢ ( 𝜑  →  𝐺  finSupp  ∅ ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  𝐺  finSupp  ∅ ) | 
						
							| 20 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) )  →  𝐵  ∈  On ) | 
						
							| 21 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) )  →  𝑐  ∈  𝐵 ) | 
						
							| 22 | 17 | simpld | ⊢ ( 𝜑  →  𝐺 : 𝐵 ⟶ 𝐴 ) | 
						
							| 23 | 22 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  𝐵 ) | 
						
							| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) )  →  𝐺  Fn  𝐵 ) | 
						
							| 25 |  | ne0i | ⊢ ( ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 )  →  ( 𝐺 ‘ 𝑐 )  ≠  ∅ ) | 
						
							| 26 | 25 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) )  →  ( 𝐺 ‘ 𝑐 )  ≠  ∅ ) | 
						
							| 27 |  | fvn0elsupp | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝑐  ∈  𝐵 )  ∧  ( 𝐺  Fn  𝐵  ∧  ( 𝐺 ‘ 𝑐 )  ≠  ∅ ) )  →  𝑐  ∈  ( 𝐺  supp  ∅ ) ) | 
						
							| 28 | 20 21 24 26 27 | syl22anc | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) )  →  𝑐  ∈  ( 𝐺  supp  ∅ ) ) | 
						
							| 29 | 28 | rabssdv | ⊢ ( 𝜑  →  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  ⊆  ( 𝐺  supp  ∅ ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  ⊆  ( 𝐺  supp  ∅ ) ) | 
						
							| 31 |  | fsuppimp | ⊢ ( 𝐺  finSupp  ∅  →  ( Fun  𝐺  ∧  ( 𝐺  supp  ∅ )  ∈  Fin ) ) | 
						
							| 32 |  | ssfi | ⊢ ( ( ( 𝐺  supp  ∅ )  ∈  Fin  ∧  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  ⊆  ( 𝐺  supp  ∅ ) )  →  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  ∈  Fin ) | 
						
							| 33 | 32 | ex | ⊢ ( ( 𝐺  supp  ∅ )  ∈  Fin  →  ( { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  ⊆  ( 𝐺  supp  ∅ )  →  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  ∈  Fin ) ) | 
						
							| 34 | 31 33 | simpl2im | ⊢ ( 𝐺  finSupp  ∅  →  ( { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  ⊆  ( 𝐺  supp  ∅ )  →  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  ∈  Fin ) ) | 
						
							| 35 | 19 30 34 | sylc | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  ∈  Fin ) | 
						
							| 36 |  | fveq2 | ⊢ ( 𝑐  =  𝑧  →  ( 𝐹 ‘ 𝑐 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 37 |  | fveq2 | ⊢ ( 𝑐  =  𝑧  →  ( 𝐺 ‘ 𝑐 )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 38 | 36 37 | eleq12d | ⊢ ( 𝑐  =  𝑧  →  ( ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 )  ↔  ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 39 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  𝑧  ∈  𝐵 ) | 
						
							| 40 |  | simprrl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 41 | 38 39 40 | elrabd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  𝑧  ∈  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) } ) | 
						
							| 42 | 41 | ne0d | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  ≠  ∅ ) | 
						
							| 43 |  | ordunifi | ⊢ ( ( { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  ⊆  On  ∧  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  ∈  Fin  ∧  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  ≠  ∅ )  →  ∪  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  ∈  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) } ) | 
						
							| 44 | 15 35 42 43 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  ∪  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  ∈  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) } ) | 
						
							| 45 | 8 44 | eqeltrid | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  𝑋  ∈  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) } ) | 
						
							| 46 | 11 45 | sselid | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 47 |  | fveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 48 |  | fveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 49 | 47 48 | eleq12d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐺 ‘ 𝑥 )  ↔  ( 𝐹 ‘ 𝑋 )  ∈  ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 50 |  | fveq2 | ⊢ ( 𝑐  =  𝑥  →  ( 𝐹 ‘ 𝑐 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 51 |  | fveq2 | ⊢ ( 𝑐  =  𝑥  →  ( 𝐺 ‘ 𝑐 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 52 | 50 51 | eleq12d | ⊢ ( 𝑐  =  𝑥  →  ( ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 )  ↔  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 53 | 52 | cbvrabv | ⊢ { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  =  { 𝑥  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐺 ‘ 𝑥 ) } | 
						
							| 54 | 49 53 | elrab2 | ⊢ ( 𝑋  ∈  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  ↔  ( 𝑋  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑋 )  ∈  ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 55 | 45 54 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  ( 𝑋  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑋 )  ∈  ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 56 | 55 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  ( 𝐹 ‘ 𝑋 )  ∈  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 57 |  | simprrr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 58 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  𝐴  ∈  On ) | 
						
							| 59 | 22 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  𝐺 : 𝐵 ⟶ 𝐴 ) | 
						
							| 60 | 59 46 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  ( 𝐺 ‘ 𝑋 )  ∈  𝐴 ) | 
						
							| 61 |  | onelon | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐺 ‘ 𝑋 )  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑋 )  ∈  On ) | 
						
							| 62 | 58 60 61 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  ( 𝐺 ‘ 𝑋 )  ∈  On ) | 
						
							| 63 |  | eloni | ⊢ ( ( 𝐺 ‘ 𝑋 )  ∈  On  →  Ord  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 64 |  | ordirr | ⊢ ( Ord  ( 𝐺 ‘ 𝑋 )  →  ¬  ( 𝐺 ‘ 𝑋 )  ∈  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 65 | 62 63 64 | 3syl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  ¬  ( 𝐺 ‘ 𝑋 )  ∈  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 66 |  | nelneq | ⊢ ( ( ( 𝐹 ‘ 𝑋 )  ∈  ( 𝐺 ‘ 𝑋 )  ∧  ¬  ( 𝐺 ‘ 𝑋 )  ∈  ( 𝐺 ‘ 𝑋 ) )  →  ¬  ( 𝐹 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 67 | 56 65 66 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  ¬  ( 𝐹 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 68 |  | eleq2 | ⊢ ( 𝑤  =  𝑋  →  ( 𝑧  ∈  𝑤  ↔  𝑧  ∈  𝑋 ) ) | 
						
							| 69 |  | fveq2 | ⊢ ( 𝑤  =  𝑋  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 70 |  | fveq2 | ⊢ ( 𝑤  =  𝑋  →  ( 𝐺 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 71 | 69 70 | eqeq12d | ⊢ ( 𝑤  =  𝑋  →  ( ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 )  ↔  ( 𝐹 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 72 | 68 71 | imbi12d | ⊢ ( 𝑤  =  𝑋  →  ( ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) )  ↔  ( 𝑧  ∈  𝑋  →  ( 𝐹 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑋 ) ) ) ) | 
						
							| 73 | 72 57 46 | rspcdva | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  ( 𝑧  ∈  𝑋  →  ( 𝐹 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 74 | 67 73 | mtod | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  ¬  𝑧  ∈  𝑋 ) | 
						
							| 75 |  | ssexg | ⊢ ( ( { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  ⊆  𝐵  ∧  𝐵  ∈  On )  →  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  ∈  V ) | 
						
							| 76 | 11 12 75 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  ∈  V ) | 
						
							| 77 |  | ssonuni | ⊢ ( { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  ∈  V  →  ( { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  ⊆  On  →  ∪  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  ∈  On ) ) | 
						
							| 78 | 76 15 77 | sylc | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  ∪  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  ∈  On ) | 
						
							| 79 | 8 78 | eqeltrid | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  𝑋  ∈  On ) | 
						
							| 80 |  | onelon | ⊢ ( ( 𝐵  ∈  On  ∧  𝑧  ∈  𝐵 )  →  𝑧  ∈  On ) | 
						
							| 81 | 12 39 80 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  𝑧  ∈  On ) | 
						
							| 82 |  | ontri1 | ⊢ ( ( 𝑋  ∈  On  ∧  𝑧  ∈  On )  →  ( 𝑋  ⊆  𝑧  ↔  ¬  𝑧  ∈  𝑋 ) ) | 
						
							| 83 | 79 81 82 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  ( 𝑋  ⊆  𝑧  ↔  ¬  𝑧  ∈  𝑋 ) ) | 
						
							| 84 | 74 83 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  𝑋  ⊆  𝑧 ) | 
						
							| 85 |  | elssuni | ⊢ ( 𝑧  ∈  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  →  𝑧  ⊆  ∪  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) } ) | 
						
							| 86 | 85 8 | sseqtrrdi | ⊢ ( 𝑧  ∈  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) }  →  𝑧  ⊆  𝑋 ) | 
						
							| 87 | 41 86 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  𝑧  ⊆  𝑋 ) | 
						
							| 88 | 84 87 | eqssd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  𝑋  =  𝑧 ) | 
						
							| 89 |  | eleq1 | ⊢ ( 𝑋  =  𝑧  →  ( 𝑋  ∈  𝑤  ↔  𝑧  ∈  𝑤 ) ) | 
						
							| 90 | 89 | imbi1d | ⊢ ( 𝑋  =  𝑧  →  ( ( 𝑋  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) )  ↔  ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) | 
						
							| 91 | 90 | ralbidv | ⊢ ( 𝑋  =  𝑧  →  ( ∀ 𝑤  ∈  𝐵 ( 𝑋  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) )  ↔  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) | 
						
							| 92 | 88 91 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  ( ∀ 𝑤  ∈  𝐵 ( 𝑋  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) )  ↔  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) | 
						
							| 93 | 57 92 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  ∀ 𝑤  ∈  𝐵 ( 𝑋  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 94 | 46 56 93 | 3jca | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐺 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) )  →  ( 𝑋  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑋 )  ∈  ( 𝐺 ‘ 𝑋 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑋  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) | 
						
							| 95 | 10 94 | rexlimddv | ⊢ ( 𝜑  →  ( 𝑋  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑋 )  ∈  ( 𝐺 ‘ 𝑋 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑋  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) |