Metamath Proof Explorer


Theorem oemapwe

Description: The lexicographic order on a function space of ordinals gives a well-ordering with order type equal to the ordinal exponential. This provides an alternate definition of the ordinal exponential. (Contributed by Mario Carneiro, 28-May-2015)

Ref Expression
Hypotheses cantnfs.s 𝑆 = dom ( 𝐴 CNF 𝐵 )
cantnfs.a ( 𝜑𝐴 ∈ On )
cantnfs.b ( 𝜑𝐵 ∈ On )
oemapval.t 𝑇 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐵 ( ( 𝑥𝑧 ) ∈ ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐵 ( 𝑧𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) }
Assertion oemapwe ( 𝜑 → ( 𝑇 We 𝑆 ∧ dom OrdIso ( 𝑇 , 𝑆 ) = ( 𝐴o 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 cantnfs.s 𝑆 = dom ( 𝐴 CNF 𝐵 )
2 cantnfs.a ( 𝜑𝐴 ∈ On )
3 cantnfs.b ( 𝜑𝐵 ∈ On )
4 oemapval.t 𝑇 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐵 ( ( 𝑥𝑧 ) ∈ ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐵 ( 𝑧𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) }
5 oecl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴o 𝐵 ) ∈ On )
6 2 3 5 syl2anc ( 𝜑 → ( 𝐴o 𝐵 ) ∈ On )
7 eloni ( ( 𝐴o 𝐵 ) ∈ On → Ord ( 𝐴o 𝐵 ) )
8 ordwe ( Ord ( 𝐴o 𝐵 ) → E We ( 𝐴o 𝐵 ) )
9 6 7 8 3syl ( 𝜑 → E We ( 𝐴o 𝐵 ) )
10 1 2 3 4 cantnf ( 𝜑 → ( 𝐴 CNF 𝐵 ) Isom 𝑇 , E ( 𝑆 , ( 𝐴o 𝐵 ) ) )
11 isowe ( ( 𝐴 CNF 𝐵 ) Isom 𝑇 , E ( 𝑆 , ( 𝐴o 𝐵 ) ) → ( 𝑇 We 𝑆 ↔ E We ( 𝐴o 𝐵 ) ) )
12 10 11 syl ( 𝜑 → ( 𝑇 We 𝑆 ↔ E We ( 𝐴o 𝐵 ) ) )
13 9 12 mpbird ( 𝜑𝑇 We 𝑆 )
14 6 7 syl ( 𝜑 → Ord ( 𝐴o 𝐵 ) )
15 isocnv ( ( 𝐴 CNF 𝐵 ) Isom 𝑇 , E ( 𝑆 , ( 𝐴o 𝐵 ) ) → ( 𝐴 CNF 𝐵 ) Isom E , 𝑇 ( ( 𝐴o 𝐵 ) , 𝑆 ) )
16 10 15 syl ( 𝜑 ( 𝐴 CNF 𝐵 ) Isom E , 𝑇 ( ( 𝐴o 𝐵 ) , 𝑆 ) )
17 ovex ( 𝐴 CNF 𝐵 ) ∈ V
18 17 dmex dom ( 𝐴 CNF 𝐵 ) ∈ V
19 1 18 eqeltri 𝑆 ∈ V
20 exse ( 𝑆 ∈ V → 𝑇 Se 𝑆 )
21 19 20 ax-mp 𝑇 Se 𝑆
22 eqid OrdIso ( 𝑇 , 𝑆 ) = OrdIso ( 𝑇 , 𝑆 )
23 22 oieu ( ( 𝑇 We 𝑆𝑇 Se 𝑆 ) → ( ( Ord ( 𝐴o 𝐵 ) ∧ ( 𝐴 CNF 𝐵 ) Isom E , 𝑇 ( ( 𝐴o 𝐵 ) , 𝑆 ) ) ↔ ( ( 𝐴o 𝐵 ) = dom OrdIso ( 𝑇 , 𝑆 ) ∧ ( 𝐴 CNF 𝐵 ) = OrdIso ( 𝑇 , 𝑆 ) ) ) )
24 13 21 23 sylancl ( 𝜑 → ( ( Ord ( 𝐴o 𝐵 ) ∧ ( 𝐴 CNF 𝐵 ) Isom E , 𝑇 ( ( 𝐴o 𝐵 ) , 𝑆 ) ) ↔ ( ( 𝐴o 𝐵 ) = dom OrdIso ( 𝑇 , 𝑆 ) ∧ ( 𝐴 CNF 𝐵 ) = OrdIso ( 𝑇 , 𝑆 ) ) ) )
25 14 16 24 mpbi2and ( 𝜑 → ( ( 𝐴o 𝐵 ) = dom OrdIso ( 𝑇 , 𝑆 ) ∧ ( 𝐴 CNF 𝐵 ) = OrdIso ( 𝑇 , 𝑆 ) ) )
26 25 simpld ( 𝜑 → ( 𝐴o 𝐵 ) = dom OrdIso ( 𝑇 , 𝑆 ) )
27 26 eqcomd ( 𝜑 → dom OrdIso ( 𝑇 , 𝑆 ) = ( 𝐴o 𝐵 ) )
28 13 27 jca ( 𝜑 → ( 𝑇 We 𝑆 ∧ dom OrdIso ( 𝑇 , 𝑆 ) = ( 𝐴o 𝐵 ) ) )